Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-2022 The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <config/bitcoin-config.h> // IWYU pragma: keep
7 : :
8 : : #include <net.h>
9 : :
10 : : #include <addrdb.h>
11 : : #include <addrman.h>
12 : : #include <banman.h>
13 : : #include <clientversion.h>
14 : : #include <common/args.h>
15 : : #include <compat/compat.h>
16 : : #include <consensus/consensus.h>
17 : : #include <crypto/sha256.h>
18 : : #include <i2p.h>
19 : : #include <key.h>
20 : : #include <logging.h>
21 : : #include <memusage.h>
22 : : #include <net_permissions.h>
23 : : #include <netaddress.h>
24 : : #include <netbase.h>
25 : : #include <node/eviction.h>
26 : : #include <node/interface_ui.h>
27 : : #include <protocol.h>
28 : : #include <random.h>
29 : : #include <scheduler.h>
30 : : #include <util/fs.h>
31 : : #include <util/sock.h>
32 : : #include <util/strencodings.h>
33 : : #include <util/thread.h>
34 : : #include <util/threadinterrupt.h>
35 : : #include <util/trace.h>
36 : : #include <util/translation.h>
37 : : #include <util/vector.h>
38 : :
39 : : #ifdef WIN32
40 : : #include <string.h>
41 : : #endif
42 : :
43 : : #if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
44 : : #include <ifaddrs.h>
45 : : #endif
46 : :
47 : : #include <algorithm>
48 : : #include <array>
49 : : #include <cmath>
50 : : #include <cstdint>
51 : : #include <functional>
52 : : #include <optional>
53 : : #include <unordered_map>
54 : :
55 : : /** Maximum number of block-relay-only anchor connections */
56 : : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
57 : : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
58 : : /** Anchor IP address database file name */
59 : : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
60 : :
61 : : // How often to dump addresses to peers.dat
62 : : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
63 : :
64 : : /** Number of DNS seeds to query when the number of connections is low. */
65 : : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
66 : :
67 : : /** Minimum number of outbound connections under which we will keep fetching our address seeds. */
68 : : static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
69 : :
70 : : /** How long to delay before querying DNS seeds
71 : : *
72 : : * If we have more than THRESHOLD entries in addrman, then it's likely
73 : : * that we got those addresses from having previously connected to the P2P
74 : : * network, and that we'll be able to successfully reconnect to the P2P
75 : : * network via contacting one of them. So if that's the case, spend a
76 : : * little longer trying to connect to known peers before querying the
77 : : * DNS seeds.
78 : : */
79 : : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
80 : : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
81 : : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
82 : :
83 : : /** The default timeframe for -maxuploadtarget. 1 day. */
84 : : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
85 : :
86 : : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
87 : : static constexpr auto FEELER_SLEEP_WINDOW{1s};
88 : :
89 : : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
90 : : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
91 : :
92 : : /** Used to pass flags to the Bind() function */
93 : : enum BindFlags {
94 : : BF_NONE = 0,
95 : : BF_REPORT_ERROR = (1U << 0),
96 : : /**
97 : : * Do not call AddLocal() for our special addresses, e.g., for incoming
98 : : * Tor connections, to prevent gossiping them over the network.
99 : : */
100 : : BF_DONT_ADVERTISE = (1U << 1),
101 : : };
102 : :
103 : : // The set of sockets cannot be modified while waiting
104 : : // The sleep time needs to be small to avoid new sockets stalling
105 : : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
106 : :
107 : : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
108 : :
109 : : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
110 : : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
111 : : static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
112 : : //
113 : : // Global state variables
114 : : //
115 : : bool fDiscover = true;
116 : : bool fListen = true;
117 : : GlobalMutex g_maplocalhost_mutex;
118 : : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
119 : : std::string strSubVersion;
120 : :
121 : 0 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
122 : : {
123 : : // Don't count the dynamic memory used for the m_type string, by assuming it fits in the
124 : : // "small string" optimization area (which stores data inside the object itself, up to some
125 : : // size; 15 bytes in modern libstdc++).
126 [ # # ]: 0 : return sizeof(*this) + memusage::DynamicUsage(data);
127 : : }
128 : :
129 : 0 : void CConnman::AddAddrFetch(const std::string& strDest)
130 : : {
131 : 0 : LOCK(m_addr_fetches_mutex);
132 [ # # ]: 0 : m_addr_fetches.push_back(strDest);
133 : 0 : }
134 : :
135 : 0 : uint16_t GetListenPort()
136 : : {
137 : : // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
138 [ # # # # ]: 0 : for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
139 : 0 : constexpr uint16_t dummy_port = 0;
140 : :
141 [ # # # # ]: 0 : const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
142 [ # # # # : 0 : if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
# # # # ]
143 : 0 : }
144 : :
145 : : // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
146 : : // (-whitebind= is required to have ":port").
147 [ # # # # ]: 0 : for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
148 [ # # ]: 0 : NetWhitebindPermissions whitebind;
149 [ # # ]: 0 : bilingual_str error;
150 [ # # # # ]: 0 : if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
151 [ # # ]: 0 : if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
152 [ # # ]: 0 : return whitebind.m_service.GetPort();
153 : : }
154 : : }
155 : 0 : }
156 : :
157 : : // Otherwise, if -port= is provided, use that. Otherwise use the default port.
158 [ # # ]: 0 : return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
159 : : }
160 : :
161 : : // Determine the "best" local address for a particular peer.
162 : 0 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
163 : : {
164 [ # # ]: 0 : if (!fListen) return std::nullopt;
165 : :
166 : 0 : std::optional<CService> addr;
167 : 0 : int nBestScore = -1;
168 : 0 : int nBestReachability = -1;
169 : 0 : {
170 [ # # ]: 0 : LOCK(g_maplocalhost_mutex);
171 [ # # # # ]: 0 : for (const auto& [local_addr, local_service_info] : mapLocalHost) {
172 : : // For privacy reasons, don't advertise our privacy-network address
173 : : // to other networks and don't advertise our other-network address
174 : : // to privacy networks.
175 [ # # # # ]: 0 : if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
176 [ # # # # : 0 : && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
# # ]
177 : 0 : continue;
178 : : }
179 : 0 : const int nScore{local_service_info.nScore};
180 [ # # ]: 0 : const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
181 [ # # # # ]: 0 : if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
182 [ # # ]: 0 : addr.emplace(CService{local_addr, local_service_info.nPort});
183 : 0 : nBestReachability = nReachability;
184 : 0 : nBestScore = nScore;
185 : : }
186 : : }
187 : 0 : }
188 [ # # ]: 0 : return addr;
189 : 0 : }
190 : :
191 : : //! Convert the serialized seeds into usable address objects.
192 : 0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
193 : : {
194 : : // It'll only connect to one or two seed nodes because once it connects,
195 : : // it'll get a pile of addresses with newer timestamps.
196 : : // Seed nodes are given a random 'last seen time' of between one and two
197 : : // weeks ago.
198 : 0 : const auto one_week{7 * 24h};
199 : 0 : std::vector<CAddress> vSeedsOut;
200 : 0 : FastRandomContext rng;
201 [ # # ]: 0 : ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
202 [ # # ]: 0 : while (!s.eof()) {
203 [ # # ]: 0 : CService endpoint;
204 [ # # ]: 0 : s >> endpoint;
205 : 0 : CAddress addr{endpoint, SeedsServiceFlags()};
206 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
207 [ # # # # : 0 : LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
# # # # ]
208 [ # # ]: 0 : vSeedsOut.push_back(addr);
209 : 0 : }
210 : 0 : return vSeedsOut;
211 : 0 : }
212 : :
213 : : // Determine the "best" local address for a particular peer.
214 : : // If none, return the unroutable 0.0.0.0 but filled in with
215 : : // the normal parameters, since the IP may be changed to a useful
216 : : // one by discovery.
217 : 0 : CService GetLocalAddress(const CNode& peer)
218 : : {
219 [ # # # # : 0 : return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
# # ]
220 : : }
221 : :
222 : 0 : static int GetnScore(const CService& addr)
223 : : {
224 : 0 : LOCK(g_maplocalhost_mutex);
225 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
226 [ # # # # ]: 0 : return (it != mapLocalHost.end()) ? it->second.nScore : 0;
227 : 0 : }
228 : :
229 : : // Is our peer's addrLocal potentially useful as an external IP source?
230 : 0 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
231 : : {
232 : 0 : CService addrLocal = pnode->GetAddrLocal();
233 [ # # # # : 0 : return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
# # # # #
# # # ]
234 [ # # ]: 0 : g_reachable_nets.Contains(addrLocal);
235 : 0 : }
236 : :
237 : 0 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
238 : : {
239 : 0 : CService addrLocal{GetLocalAddress(node)};
240 : : // If discovery is enabled, sometimes give our peer the address it
241 : : // tells us that it sees us as in case it has a better idea of our
242 : : // address than we do.
243 : 0 : FastRandomContext rng;
244 [ # # # # : 0 : if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
# # # # #
# ]
245 [ # # # # ]: 0 : rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
246 : : {
247 [ # # ]: 0 : if (node.IsInboundConn()) {
248 : : // For inbound connections, assume both the address and the port
249 : : // as seen from the peer.
250 [ # # ]: 0 : addrLocal = CService{node.GetAddrLocal()};
251 : : } else {
252 : : // For outbound connections, assume just the address as seen from
253 : : // the peer and leave the port in `addrLocal` as returned by
254 : : // `GetLocalAddress()` above. The peer has no way to observe our
255 : : // listening port when we have initiated the connection.
256 [ # # # # ]: 0 : addrLocal.SetIP(node.GetAddrLocal());
257 : : }
258 : : }
259 [ # # # # ]: 0 : if (addrLocal.IsRoutable()) {
260 [ # # # # : 0 : LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
# # # # ]
261 : 0 : return addrLocal;
262 : : }
263 : : // Address is unroutable. Don't advertise.
264 : 0 : return std::nullopt;
265 : 0 : }
266 : :
267 : : // learn a new local address
268 : 0 : bool AddLocal(const CService& addr_, int nScore)
269 : : {
270 : 0 : CService addr{MaybeFlipIPv6toCJDNS(addr_)};
271 : :
272 [ # # # # ]: 0 : if (!addr.IsRoutable())
273 : : return false;
274 : :
275 [ # # # # ]: 0 : if (!fDiscover && nScore < LOCAL_MANUAL)
276 : : return false;
277 : :
278 [ # # # # ]: 0 : if (!g_reachable_nets.Contains(addr))
279 : : return false;
280 : :
281 [ # # # # ]: 0 : LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
282 : :
283 : 0 : {
284 [ # # ]: 0 : LOCK(g_maplocalhost_mutex);
285 [ # # # # ]: 0 : const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
286 [ # # ]: 0 : LocalServiceInfo &info = it->second;
287 [ # # # # ]: 0 : if (is_newly_added || nScore >= info.nScore) {
288 [ # # ]: 0 : info.nScore = nScore + (is_newly_added ? 0 : 1);
289 [ # # ]: 0 : info.nPort = addr.GetPort();
290 : : }
291 : 0 : }
292 : :
293 : 0 : return true;
294 : 0 : }
295 : :
296 : 0 : bool AddLocal(const CNetAddr &addr, int nScore)
297 : : {
298 [ # # ]: 0 : return AddLocal(CService(addr, GetListenPort()), nScore);
299 : : }
300 : :
301 : 0 : void RemoveLocal(const CService& addr)
302 : : {
303 : 0 : LOCK(g_maplocalhost_mutex);
304 [ # # # # ]: 0 : LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
305 [ # # # # ]: 0 : mapLocalHost.erase(addr);
306 : 0 : }
307 : :
308 : : /** vote for a local address */
309 : 0 : bool SeenLocal(const CService& addr)
310 : : {
311 : 0 : LOCK(g_maplocalhost_mutex);
312 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
313 [ # # ]: 0 : if (it == mapLocalHost.end()) return false;
314 : 0 : ++it->second.nScore;
315 : 0 : return true;
316 : 0 : }
317 : :
318 : :
319 : : /** check whether a given address is potentially local */
320 : 0 : bool IsLocal(const CService& addr)
321 : : {
322 : 0 : LOCK(g_maplocalhost_mutex);
323 [ # # # # ]: 0 : return mapLocalHost.count(addr) > 0;
324 : 0 : }
325 : :
326 : 0 : CNode* CConnman::FindNode(const CNetAddr& ip)
327 : : {
328 : 0 : LOCK(m_nodes_mutex);
329 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
330 [ # # # # ]: 0 : if (static_cast<CNetAddr>(pnode->addr) == ip) {
331 : : return pnode;
332 : : }
333 : : }
334 : : return nullptr;
335 : 0 : }
336 : :
337 : 0 : CNode* CConnman::FindNode(const std::string& addrName)
338 : : {
339 : 0 : LOCK(m_nodes_mutex);
340 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
341 [ # # ]: 0 : if (pnode->m_addr_name == addrName) {
342 : : return pnode;
343 : : }
344 : : }
345 : : return nullptr;
346 : 0 : }
347 : :
348 : 0 : CNode* CConnman::FindNode(const CService& addr)
349 : : {
350 : 0 : LOCK(m_nodes_mutex);
351 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
352 [ # # # # ]: 0 : if (static_cast<CService>(pnode->addr) == addr) {
353 : : return pnode;
354 : : }
355 : : }
356 : : return nullptr;
357 : 0 : }
358 : :
359 : 0 : bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
360 : : {
361 [ # # # # : 0 : return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
# # # # #
# ]
362 : : }
363 : :
364 : 0 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
365 : : {
366 : 0 : LOCK(m_nodes_mutex);
367 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
368 [ # # # # : 0 : if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
# # ]
369 : : return false;
370 : : }
371 : : return true;
372 : 0 : }
373 : :
374 : : /** Get the bind address for a socket as CAddress */
375 : 0 : static CAddress GetBindAddress(const Sock& sock)
376 : : {
377 : 0 : CAddress addr_bind;
378 : 0 : struct sockaddr_storage sockaddr_bind;
379 : 0 : socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
380 [ # # # # ]: 0 : if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
381 [ # # ]: 0 : addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
382 : : } else {
383 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
# # ]
384 : : }
385 : 0 : return addr_bind;
386 : 0 : }
387 : :
388 : 0 : CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
389 : : {
390 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
391 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
392 : :
393 [ # # ]: 0 : if (pszDest == nullptr) {
394 [ # # ]: 0 : if (IsLocal(addrConnect))
395 : : return nullptr;
396 : :
397 : : // Look for an existing connection
398 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
399 [ # # ]: 0 : if (pnode)
400 : : {
401 : 0 : LogPrintf("Failed to open new connection, already connected\n");
402 : 0 : return nullptr;
403 : : }
404 : : }
405 : :
406 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
# # # # #
# ]
407 : : use_v2transport ? "v2" : "v1",
408 : : pszDest ? pszDest : addrConnect.ToStringAddrPort(),
409 : : Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
410 : :
411 : : // Resolve
412 [ # # # # ]: 0 : const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
413 : 0 : m_params.GetDefaultPort()};
414 : :
415 : : // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
416 : 0 : std::vector<CAddress> connect_to{};
417 [ # # ]: 0 : if (pszDest) {
418 [ # # # # : 0 : std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
# # # # #
# # # ]
419 [ # # ]: 0 : if (!resolved.empty()) {
420 : 0 : std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
421 : : // If the connection is made by name, it can be the case that the name resolves to more than one address.
422 : : // We don't want to connect any more of them if we are already connected to one
423 [ # # ]: 0 : for (const auto& r : resolved) {
424 [ # # ]: 0 : addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
425 [ # # # # ]: 0 : if (!addrConnect.IsValid()) {
426 [ # # # # : 0 : LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
# # # # ]
427 : 0 : return nullptr;
428 : : }
429 : : // It is possible that we already have a connection to the IP/port pszDest resolved to.
430 : : // In that case, drop the connection that was just created.
431 [ # # ]: 0 : LOCK(m_nodes_mutex);
432 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
433 [ # # ]: 0 : if (pnode) {
434 [ # # # # ]: 0 : LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
435 [ # # ]: 0 : return nullptr;
436 : : }
437 : : // Add the address to the resolved addresses vector so we can try to connect to it later on
438 [ # # ]: 0 : connect_to.push_back(addrConnect);
439 : 0 : }
440 : : } else {
441 : : // For resolution via proxy
442 [ # # ]: 0 : connect_to.push_back(addrConnect);
443 : : }
444 : 0 : } else {
445 : : // Connect via addrConnect directly
446 [ # # ]: 0 : connect_to.push_back(addrConnect);
447 : : }
448 : :
449 : : // Connect
450 : 0 : std::unique_ptr<Sock> sock;
451 [ # # ]: 0 : Proxy proxy;
452 [ # # ]: 0 : CAddress addr_bind;
453 [ # # # # ]: 0 : assert(!addr_bind.IsValid());
454 : 0 : std::unique_ptr<i2p::sam::Session> i2p_transient_session;
455 : :
456 [ # # ]: 0 : for (auto& target_addr: connect_to) {
457 [ # # # # ]: 0 : if (target_addr.IsValid()) {
458 [ # # # # ]: 0 : const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
459 : 0 : bool proxyConnectionFailed = false;
460 : :
461 [ # # # # ]: 0 : if (target_addr.IsI2P() && use_proxy) {
462 [ # # ]: 0 : i2p::Connection conn;
463 : 0 : bool connected{false};
464 : :
465 [ # # ]: 0 : if (m_i2p_sam_session) {
466 [ # # ]: 0 : connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
467 : : } else {
468 : 0 : {
469 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
470 [ # # ]: 0 : if (m_unused_i2p_sessions.empty()) {
471 : 0 : i2p_transient_session =
472 [ # # ]: 0 : std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
473 : : } else {
474 : 0 : i2p_transient_session.swap(m_unused_i2p_sessions.front());
475 : 0 : m_unused_i2p_sessions.pop();
476 : : }
477 : 0 : }
478 [ # # ]: 0 : connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
479 [ # # ]: 0 : if (!connected) {
480 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
481 [ # # ]: 0 : if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
482 [ # # # # ]: 0 : m_unused_i2p_sessions.emplace(i2p_transient_session.release());
483 : : }
484 : 0 : }
485 : : }
486 : :
487 [ # # ]: 0 : if (connected) {
488 : 0 : sock = std::move(conn.sock);
489 : 0 : addr_bind = CAddress{conn.me, NODE_NONE};
490 : : }
491 [ # # ]: 0 : } else if (use_proxy) {
492 [ # # # # : 0 : LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
# # # # #
# ]
493 [ # # # # : 0 : sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
# # ]
494 : : } else {
495 : : // no proxy needed (none set for target network)
496 [ # # ]: 0 : sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
497 : : }
498 [ # # ]: 0 : if (!proxyConnectionFailed) {
499 : : // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
500 : : // the proxy, mark this as an attempt.
501 [ # # ]: 0 : addrman.Attempt(target_addr, fCountFailure);
502 : : }
503 [ # # # # : 0 : } else if (pszDest && GetNameProxy(proxy)) {
# # ]
504 [ # # ]: 0 : std::string host;
505 : 0 : uint16_t port{default_port};
506 [ # # # # ]: 0 : SplitHostPort(std::string(pszDest), port, host);
507 : 0 : bool proxyConnectionFailed;
508 [ # # ]: 0 : sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
509 : 0 : }
510 : : // Check any other resolved address (if any) if we fail to connect
511 [ # # ]: 0 : if (!sock) {
512 : 0 : continue;
513 : : }
514 : :
515 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
516 [ # # # # ]: 0 : std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
517 [ # # ]: 0 : AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
518 : :
519 : : // Add node
520 [ # # ]: 0 : NodeId id = GetNewNodeId();
521 [ # # # # : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
# # ]
522 [ # # # # ]: 0 : if (!addr_bind.IsValid()) {
523 [ # # ]: 0 : addr_bind = GetBindAddress(*sock);
524 : : }
525 : 0 : CNode* pnode = new CNode(id,
526 : : std::move(sock),
527 : : target_addr,
528 : : CalculateKeyedNetGroup(target_addr),
529 : : nonce,
530 : : addr_bind,
531 : 0 : pszDest ? pszDest : "",
532 : : conn_type,
533 : : /*inbound_onion=*/false,
534 [ # # ]: 0 : CNodeOptions{
535 : : .permission_flags = permission_flags,
536 : : .i2p_sam_session = std::move(i2p_transient_session),
537 [ # # ]: 0 : .recv_flood_size = nReceiveFloodSize,
538 : : .use_v2transport = use_v2transport,
539 [ # # # # : 0 : });
# # # # #
# # # #
# ]
540 : 0 : pnode->AddRef();
541 : :
542 : : // We're making a new connection, harvest entropy from the time (and our peer count)
543 : 0 : RandAddEvent((uint32_t)id);
544 : :
545 : 0 : return pnode;
546 : 0 : }
547 : :
548 : : return nullptr;
549 : 0 : }
550 : :
551 : 0 : void CNode::CloseSocketDisconnect()
552 : : {
553 : 0 : fDisconnect = true;
554 : 0 : LOCK(m_sock_mutex);
555 [ # # ]: 0 : if (m_sock) {
556 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnecting peer=%d\n", id);
# # ]
557 : 0 : m_sock.reset();
558 : : }
559 [ # # # # ]: 0 : m_i2p_sam_session.reset();
560 : 0 : }
561 : :
562 : 0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
563 [ # # ]: 0 : for (const auto& subnet : ranges) {
564 [ # # ]: 0 : if (subnet.m_subnet.Match(addr)) {
565 : 0 : NetPermissions::AddFlag(flags, subnet.m_flags);
566 : : }
567 : : }
568 [ # # ]: 0 : if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
569 [ # # ]: 0 : NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
570 [ # # ]: 0 : if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
571 [ # # ]: 0 : if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
572 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
573 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
574 : : }
575 : 0 : }
576 : :
577 : 0 : CService CNode::GetAddrLocal() const
578 : : {
579 : 0 : AssertLockNotHeld(m_addr_local_mutex);
580 : 0 : LOCK(m_addr_local_mutex);
581 [ # # ]: 0 : return m_addr_local;
582 : 0 : }
583 : :
584 : 0 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
585 : 0 : AssertLockNotHeld(m_addr_local_mutex);
586 : 0 : LOCK(m_addr_local_mutex);
587 [ # # # # : 0 : if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
# # ]
588 : 0 : m_addr_local = addrLocalIn;
589 : : }
590 : 0 : }
591 : :
592 : 0 : Network CNode::ConnectedThroughNetwork() const
593 : : {
594 [ # # ]: 0 : return m_inbound_onion ? NET_ONION : addr.GetNetClass();
595 : : }
596 : :
597 : 0 : bool CNode::IsConnectedThroughPrivacyNet() const
598 : : {
599 [ # # # # ]: 0 : return m_inbound_onion || addr.IsPrivacyNet();
600 : : }
601 : :
602 : : #undef X
603 : : #define X(name) stats.name = name
604 : 0 : void CNode::CopyStats(CNodeStats& stats)
605 : : {
606 : 0 : stats.nodeid = this->GetId();
607 : 0 : X(addr);
608 : 0 : X(addrBind);
609 : 0 : stats.m_network = ConnectedThroughNetwork();
610 : 0 : X(m_last_send);
611 : 0 : X(m_last_recv);
612 : 0 : X(m_last_tx_time);
613 : 0 : X(m_last_block_time);
614 : 0 : X(m_connected);
615 : 0 : X(m_addr_name);
616 : 0 : X(nVersion);
617 : 0 : {
618 : 0 : LOCK(m_subver_mutex);
619 [ # # # # ]: 0 : X(cleanSubVer);
620 : 0 : }
621 : 0 : stats.fInbound = IsInboundConn();
622 : 0 : X(m_bip152_highbandwidth_to);
623 : 0 : X(m_bip152_highbandwidth_from);
624 : 0 : {
625 : 0 : LOCK(cs_vSend);
626 [ # # ]: 0 : X(mapSendBytesPerMsgType);
627 [ # # ]: 0 : X(nSendBytes);
628 : 0 : }
629 : 0 : {
630 : 0 : LOCK(cs_vRecv);
631 [ # # ]: 0 : X(mapRecvBytesPerMsgType);
632 : 0 : X(nRecvBytes);
633 : 0 : Transport::Info info = m_transport->GetInfo();
634 : 0 : stats.m_transport_type = info.transport_type;
635 [ # # # # ]: 0 : if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
636 : 0 : }
637 : 0 : X(m_permission_flags);
638 : :
639 : 0 : X(m_last_ping_time);
640 : 0 : X(m_min_ping_time);
641 : :
642 : : // Leave string empty if addrLocal invalid (not filled in yet)
643 : 0 : CService addrLocalUnlocked = GetAddrLocal();
644 [ # # # # : 0 : stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
# # # # ]
645 : :
646 : 0 : X(m_conn_type);
647 : 0 : }
648 : : #undef X
649 : :
650 : 0 : bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
651 : : {
652 : 0 : complete = false;
653 : 0 : const auto time = GetTime<std::chrono::microseconds>();
654 : 0 : LOCK(cs_vRecv);
655 : 0 : m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
656 : 0 : nRecvBytes += msg_bytes.size();
657 [ # # ]: 0 : while (msg_bytes.size() > 0) {
658 : : // absorb network data
659 [ # # # # ]: 0 : if (!m_transport->ReceivedBytes(msg_bytes)) {
660 : : // Serious transport problem, disconnect from the peer.
661 : : return false;
662 : : }
663 : :
664 [ # # # # ]: 0 : if (m_transport->ReceivedMessageComplete()) {
665 : : // decompose a transport agnostic CNetMessage from the deserializer
666 : 0 : bool reject_message{false};
667 [ # # ]: 0 : CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
668 [ # # ]: 0 : if (reject_message) {
669 : : // Message deserialization failed. Drop the message but don't disconnect the peer.
670 : : // store the size of the corrupt message
671 [ # # ]: 0 : mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
672 : 0 : continue;
673 : : }
674 : :
675 : : // Store received bytes per message type.
676 : : // To prevent a memory DOS, only allow known message types.
677 : 0 : auto i = mapRecvBytesPerMsgType.find(msg.m_type);
678 [ # # ]: 0 : if (i == mapRecvBytesPerMsgType.end()) {
679 : 0 : i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
680 : : }
681 [ # # ]: 0 : assert(i != mapRecvBytesPerMsgType.end());
682 [ # # ]: 0 : i->second += msg.m_raw_message_size;
683 : :
684 : : // push the message to the process queue,
685 [ # # ]: 0 : vRecvMsg.push_back(std::move(msg));
686 : :
687 : 0 : complete = true;
688 : 0 : }
689 : : }
690 : :
691 : : return true;
692 : 0 : }
693 : :
694 : 0 : V1Transport::V1Transport(const NodeId node_id) noexcept
695 : 0 : : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
696 : : {
697 : 0 : LOCK(m_recv_mutex);
698 [ # # ]: 0 : Reset();
699 : 0 : }
700 : :
701 : 0 : Transport::Info V1Transport::GetInfo() const noexcept
702 : : {
703 : 0 : return {.transport_type = TransportProtocolType::V1, .session_id = {}};
704 : : }
705 : :
706 : 0 : int V1Transport::readHeader(Span<const uint8_t> msg_bytes)
707 : : {
708 : 0 : AssertLockHeld(m_recv_mutex);
709 : : // copy data to temporary parsing buffer
710 : 0 : unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
711 [ # # ]: 0 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
712 : :
713 [ # # ]: 0 : memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
714 : 0 : nHdrPos += nCopy;
715 : :
716 : : // if header incomplete, exit
717 [ # # ]: 0 : if (nHdrPos < CMessageHeader::HEADER_SIZE)
718 : 0 : return nCopy;
719 : :
720 : : // deserialize to CMessageHeader
721 : 0 : try {
722 [ # # ]: 0 : hdrbuf >> hdr;
723 : : }
724 [ - - ]: 0 : catch (const std::exception&) {
725 [ - - - - : 0 : LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
- - ]
726 : 0 : return -1;
727 : 0 : }
728 : :
729 : : // Check start string, network magic
730 [ # # ]: 0 : if (hdr.pchMessageStart != m_magic_bytes) {
731 [ # # # # ]: 0 : LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
732 : 0 : return -1;
733 : : }
734 : :
735 : : // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
736 [ # # ]: 0 : if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
737 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
# # ]
738 : 0 : return -1;
739 : : }
740 : :
741 : : // switch state to reading message data
742 : 0 : in_data = true;
743 : :
744 : 0 : return nCopy;
745 : : }
746 : :
747 : 0 : int V1Transport::readData(Span<const uint8_t> msg_bytes)
748 : : {
749 : 0 : AssertLockHeld(m_recv_mutex);
750 : 0 : unsigned int nRemaining = hdr.nMessageSize - nDataPos;
751 [ # # ]: 0 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
752 : :
753 [ # # ]: 0 : if (vRecv.size() < nDataPos + nCopy) {
754 : : // Allocate up to 256 KiB ahead, but never more than the total message size.
755 [ # # ]: 0 : vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
756 : : }
757 : :
758 : 0 : hasher.Write(msg_bytes.first(nCopy));
759 : 0 : memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
760 : 0 : nDataPos += nCopy;
761 : :
762 : 0 : return nCopy;
763 : : }
764 : :
765 : 0 : const uint256& V1Transport::GetMessageHash() const
766 : : {
767 : 0 : AssertLockHeld(m_recv_mutex);
768 [ # # # # ]: 0 : assert(CompleteInternal());
769 [ # # ]: 0 : if (data_hash.IsNull())
770 : 0 : hasher.Finalize(data_hash);
771 : 0 : return data_hash;
772 : : }
773 : :
774 : 0 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
775 : : {
776 : 0 : AssertLockNotHeld(m_recv_mutex);
777 : : // Initialize out parameter
778 : 0 : reject_message = false;
779 : : // decompose a single CNetMessage from the TransportDeserializer
780 : 0 : LOCK(m_recv_mutex);
781 [ # # ]: 0 : CNetMessage msg(std::move(vRecv));
782 : :
783 : : // store message type string, time, and sizes
784 [ # # ]: 0 : msg.m_type = hdr.GetCommand();
785 : 0 : msg.m_time = time;
786 : 0 : msg.m_message_size = hdr.nMessageSize;
787 : 0 : msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
788 : :
789 [ # # ]: 0 : uint256 hash = GetMessageHash();
790 : :
791 : : // We just received a message off the wire, harvest entropy from the time (and the message checksum)
792 : 0 : RandAddEvent(ReadLE32(hash.begin()));
793 : :
794 : : // Check checksum and header message type string
795 [ # # ]: 0 : if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
796 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
# # # # #
# # # ]
797 : : SanitizeString(msg.m_type), msg.m_message_size,
798 : : HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
799 : : HexStr(hdr.pchChecksum),
800 : : m_node_id);
801 : 0 : reject_message = true;
802 [ # # # # ]: 0 : } else if (!hdr.IsCommandValid()) {
803 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
# # # # #
# ]
804 : : SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
805 : 0 : reject_message = true;
806 : : }
807 : :
808 : : // Always reset the network deserializer (prepare for the next message)
809 [ # # ]: 0 : Reset();
810 [ # # ]: 0 : return msg;
811 : 0 : }
812 : :
813 : 0 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
814 : : {
815 : 0 : AssertLockNotHeld(m_send_mutex);
816 : : // Determine whether a new message can be set.
817 : 0 : LOCK(m_send_mutex);
818 [ # # # # ]: 0 : if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
819 : :
820 : : // create dbl-sha256 checksum
821 : 0 : uint256 hash = Hash(msg.data);
822 : :
823 : : // create header
824 : 0 : CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
825 [ # # ]: 0 : memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
826 : :
827 : : // serialize header
828 [ # # ]: 0 : m_header_to_send.clear();
829 : 0 : VectorWriter{m_header_to_send, 0, hdr};
830 : :
831 : : // update state
832 : 0 : m_message_to_send = std::move(msg);
833 : 0 : m_sending_header = true;
834 : 0 : m_bytes_sent = 0;
835 : 0 : return true;
836 : 0 : }
837 : :
838 : 0 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
839 : : {
840 : 0 : AssertLockNotHeld(m_send_mutex);
841 : 0 : LOCK(m_send_mutex);
842 [ # # ]: 0 : if (m_sending_header) {
843 [ # # ]: 0 : return {Span{m_header_to_send}.subspan(m_bytes_sent),
844 : : // We have more to send after the header if the message has payload, or if there
845 : : // is a next message after that.
846 [ # # # # ]: 0 : have_next_message || !m_message_to_send.data.empty(),
847 : 0 : m_message_to_send.m_type
848 : 0 : };
849 : : } else {
850 : 0 : return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
851 : : // We only have more to send after this message's payload if there is another
852 : : // message.
853 : : have_next_message,
854 : 0 : m_message_to_send.m_type
855 : 0 : };
856 : : }
857 : 0 : }
858 : :
859 : 0 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
860 : : {
861 : 0 : AssertLockNotHeld(m_send_mutex);
862 : 0 : LOCK(m_send_mutex);
863 : 0 : m_bytes_sent += bytes_sent;
864 [ # # # # ]: 0 : if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
865 : : // We're done sending a message's header. Switch to sending its data bytes.
866 : 0 : m_sending_header = false;
867 : 0 : m_bytes_sent = 0;
868 [ # # # # ]: 0 : } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
869 : : // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
870 : 0 : ClearShrink(m_message_to_send.data);
871 : 0 : m_bytes_sent = 0;
872 : : }
873 : 0 : }
874 : :
875 : 0 : size_t V1Transport::GetSendMemoryUsage() const noexcept
876 : : {
877 : 0 : AssertLockNotHeld(m_send_mutex);
878 : 0 : LOCK(m_send_mutex);
879 : : // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
880 [ # # ]: 0 : return m_message_to_send.GetMemoryUsage();
881 : 0 : }
882 : :
883 : : namespace {
884 : :
885 : : /** List of short messages as defined in BIP324, in order.
886 : : *
887 : : * Only message types that are actually implemented in this codebase need to be listed, as other
888 : : * messages get ignored anyway - whether we know how to decode them or not.
889 : : */
890 : : const std::array<std::string, 33> V2_MESSAGE_IDS = {
891 : : "", // 12 bytes follow encoding the message type like in V1
892 : : NetMsgType::ADDR,
893 : : NetMsgType::BLOCK,
894 : : NetMsgType::BLOCKTXN,
895 : : NetMsgType::CMPCTBLOCK,
896 : : NetMsgType::FEEFILTER,
897 : : NetMsgType::FILTERADD,
898 : : NetMsgType::FILTERCLEAR,
899 : : NetMsgType::FILTERLOAD,
900 : : NetMsgType::GETBLOCKS,
901 : : NetMsgType::GETBLOCKTXN,
902 : : NetMsgType::GETDATA,
903 : : NetMsgType::GETHEADERS,
904 : : NetMsgType::HEADERS,
905 : : NetMsgType::INV,
906 : : NetMsgType::MEMPOOL,
907 : : NetMsgType::MERKLEBLOCK,
908 : : NetMsgType::NOTFOUND,
909 : : NetMsgType::PING,
910 : : NetMsgType::PONG,
911 : : NetMsgType::SENDCMPCT,
912 : : NetMsgType::TX,
913 : : NetMsgType::GETCFILTERS,
914 : : NetMsgType::CFILTER,
915 : : NetMsgType::GETCFHEADERS,
916 : : NetMsgType::CFHEADERS,
917 : : NetMsgType::GETCFCHECKPT,
918 : : NetMsgType::CFCHECKPT,
919 : : NetMsgType::ADDRV2,
920 : : // Unimplemented message types that are assigned in BIP324:
921 : : "",
922 : : "",
923 : : "",
924 : : ""
925 : : };
926 : :
927 : : class V2MessageMap
928 : : {
929 : : std::unordered_map<std::string, uint8_t> m_map;
930 : :
931 : : public:
932 : 2 : V2MessageMap() noexcept
933 : 2 : {
934 [ + + ]: 66 : for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
935 : 64 : m_map.emplace(V2_MESSAGE_IDS[i], i);
936 : : }
937 : 2 : }
938 : :
939 : 0 : std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
940 : : {
941 : 0 : auto it = m_map.find(message_name);
942 [ # # ]: 0 : if (it == m_map.end()) return std::nullopt;
943 : 0 : return it->second;
944 : : }
945 : : };
946 : :
947 : : const V2MessageMap V2_MESSAGE_MAP;
948 : :
949 : 0 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
950 : : {
951 : 0 : std::vector<uint8_t> ret;
952 : 0 : FastRandomContext rng;
953 : 0 : ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
954 : 0 : rng.fillrand(MakeWritableByteSpan(ret));
955 : 0 : return ret;
956 : 0 : }
957 : :
958 : : } // namespace
959 : :
960 : 0 : void V2Transport::StartSendingHandshake() noexcept
961 : : {
962 : 0 : AssertLockHeld(m_send_mutex);
963 : 0 : Assume(m_send_state == SendState::AWAITING_KEY);
964 : 0 : Assume(m_send_buffer.empty());
965 : : // Initialize the send buffer with ellswift pubkey + provided garbage.
966 : 0 : m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
967 : 0 : std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
968 : 0 : std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
969 : : // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
970 : 0 : }
971 : :
972 : 0 : V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
973 : 0 : : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
974 : 0 : m_v1_fallback{nodeid},
975 [ # # ]: 0 : m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
976 : 0 : m_send_garbage{std::move(garbage)},
977 [ # # ]: 0 : m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
978 : : {
979 : 0 : Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
980 : : // Start sending immediately if we're the initiator of the connection.
981 [ # # ]: 0 : if (initiating) {
982 : 0 : LOCK(m_send_mutex);
983 [ # # ]: 0 : StartSendingHandshake();
984 : 0 : }
985 : 0 : }
986 : :
987 : 0 : V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
988 : 0 : : V2Transport{nodeid, initiating, GenerateRandomKey(),
989 : 0 : MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
990 : :
991 : 0 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
992 : : {
993 : 0 : AssertLockHeld(m_recv_mutex);
994 : : // Enforce allowed state transitions.
995 [ # # # # : 0 : switch (m_recv_state) {
# # # # ]
996 : 0 : case RecvState::KEY_MAYBE_V1:
997 : 0 : Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
998 : 0 : break;
999 : 0 : case RecvState::KEY:
1000 : 0 : Assume(recv_state == RecvState::GARB_GARBTERM);
1001 : 0 : break;
1002 : 0 : case RecvState::GARB_GARBTERM:
1003 : 0 : Assume(recv_state == RecvState::VERSION);
1004 : 0 : break;
1005 : 0 : case RecvState::VERSION:
1006 : 0 : Assume(recv_state == RecvState::APP);
1007 : 0 : break;
1008 : 0 : case RecvState::APP:
1009 : 0 : Assume(recv_state == RecvState::APP_READY);
1010 : 0 : break;
1011 : 0 : case RecvState::APP_READY:
1012 : 0 : Assume(recv_state == RecvState::APP);
1013 : 0 : break;
1014 : 0 : case RecvState::V1:
1015 : 0 : Assume(false); // V1 state cannot be left
1016 : 0 : break;
1017 : : }
1018 : : // Change state.
1019 : 0 : m_recv_state = recv_state;
1020 : 0 : }
1021 : :
1022 : 0 : void V2Transport::SetSendState(SendState send_state) noexcept
1023 : : {
1024 : 0 : AssertLockHeld(m_send_mutex);
1025 : : // Enforce allowed state transitions.
1026 [ # # # # ]: 0 : switch (m_send_state) {
1027 : 0 : case SendState::MAYBE_V1:
1028 : 0 : Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1029 : 0 : break;
1030 : 0 : case SendState::AWAITING_KEY:
1031 : 0 : Assume(send_state == SendState::READY);
1032 : 0 : break;
1033 : 0 : case SendState::READY:
1034 : 0 : case SendState::V1:
1035 : 0 : Assume(false); // Final states
1036 : 0 : break;
1037 : : }
1038 : : // Change state.
1039 : 0 : m_send_state = send_state;
1040 : 0 : }
1041 : :
1042 : 0 : bool V2Transport::ReceivedMessageComplete() const noexcept
1043 : : {
1044 : 0 : AssertLockNotHeld(m_recv_mutex);
1045 : 0 : LOCK(m_recv_mutex);
1046 [ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1047 : :
1048 : 0 : return m_recv_state == RecvState::APP_READY;
1049 : 0 : }
1050 : :
1051 : 0 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1052 : : {
1053 : 0 : AssertLockHeld(m_recv_mutex);
1054 : 0 : AssertLockNotHeld(m_send_mutex);
1055 : 0 : Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1056 : : // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1057 : : // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1058 : : // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1059 : : // sending of the key.
1060 : 0 : std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1061 : 0 : std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1062 : 0 : Assume(m_recv_buffer.size() <= v1_prefix.size());
1063 [ # # ]: 0 : if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1064 : : // Mismatch with v1 prefix, so we can assume a v2 connection.
1065 : 0 : SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1066 : : // Transition the sender to AWAITING_KEY state and start sending.
1067 : 0 : LOCK(m_send_mutex);
1068 : 0 : SetSendState(SendState::AWAITING_KEY);
1069 [ # # ]: 0 : StartSendingHandshake();
1070 [ # # ]: 0 : } else if (m_recv_buffer.size() == v1_prefix.size()) {
1071 : : // Full match with the v1 prefix, so fall back to v1 behavior.
1072 : 0 : LOCK(m_send_mutex);
1073 : 0 : Span<const uint8_t> feedback{m_recv_buffer};
1074 : : // Feed already received bytes to v1 transport. It should always accept these, because it's
1075 : : // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1076 : 0 : bool ret = m_v1_fallback.ReceivedBytes(feedback);
1077 : 0 : Assume(feedback.empty());
1078 : 0 : Assume(ret);
1079 : 0 : SetReceiveState(RecvState::V1);
1080 : 0 : SetSendState(SendState::V1);
1081 : : // Reset v2 transport buffers to save memory.
1082 : 0 : ClearShrink(m_recv_buffer);
1083 [ # # ]: 0 : ClearShrink(m_send_buffer);
1084 : 0 : } else {
1085 : : // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1086 : : }
1087 : 0 : }
1088 : :
1089 : 0 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
1090 : : {
1091 : 0 : AssertLockHeld(m_recv_mutex);
1092 : 0 : AssertLockNotHeld(m_send_mutex);
1093 : 0 : Assume(m_recv_state == RecvState::KEY);
1094 : 0 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1095 : :
1096 : : // As a special exception, if bytes 4-16 of the key on a responder connection match the
1097 : : // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1098 : : // (if they did, we'd have switched to V1 state already), assume this is a peer from
1099 : : // another network, and disconnect them. They will almost certainly disconnect us too when
1100 : : // they receive our uniformly random key and garbage, but detecting this case specially
1101 : : // means we can log it.
1102 : 0 : static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1103 : 0 : static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1104 [ # # # # ]: 0 : if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1105 [ # # ]: 0 : if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1106 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1107 : : HexStr(Span(m_recv_buffer).first(OFFSET)));
1108 : 0 : return false;
1109 : : }
1110 : : }
1111 : :
1112 [ # # ]: 0 : if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1113 : : // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1114 : : // our key to initialize the encryption ciphers.
1115 : :
1116 : : // Initialize the ciphers.
1117 : 0 : EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1118 : 0 : LOCK(m_send_mutex);
1119 : 0 : m_cipher.Initialize(ellswift, m_initiating);
1120 : :
1121 : : // Switch receiver state to GARB_GARBTERM.
1122 : 0 : SetReceiveState(RecvState::GARB_GARBTERM);
1123 [ # # ]: 0 : m_recv_buffer.clear();
1124 : :
1125 : : // Switch sender state to READY.
1126 : 0 : SetSendState(SendState::READY);
1127 : :
1128 : : // Append the garbage terminator to the send buffer.
1129 : 0 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1130 : 0 : std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1131 : 0 : m_cipher.GetSendGarbageTerminator().end(),
1132 : 0 : MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1133 : :
1134 : : // Construct version packet in the send buffer, with the sent garbage data as AAD.
1135 : 0 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1136 : 0 : m_cipher.Encrypt(
1137 : : /*contents=*/VERSION_CONTENTS,
1138 : 0 : /*aad=*/MakeByteSpan(m_send_garbage),
1139 : : /*ignore=*/false,
1140 : 0 : /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1141 : : // We no longer need the garbage.
1142 [ # # ]: 0 : ClearShrink(m_send_garbage);
1143 : 0 : } else {
1144 : : // We still have to receive more key bytes.
1145 : : }
1146 : : return true;
1147 : : }
1148 : :
1149 : 0 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1150 : : {
1151 : 0 : AssertLockHeld(m_recv_mutex);
1152 : 0 : Assume(m_recv_state == RecvState::GARB_GARBTERM);
1153 : 0 : Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1154 [ # # ]: 0 : if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1155 [ # # ]: 0 : if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1156 : : // Garbage terminator received. Store garbage to authenticate it as AAD later.
1157 : 0 : m_recv_aad = std::move(m_recv_buffer);
1158 : 0 : m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1159 [ # # ]: 0 : m_recv_buffer.clear();
1160 : 0 : SetReceiveState(RecvState::VERSION);
1161 [ # # ]: 0 : } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1162 : : // We've reached the maximum length for garbage + garbage terminator, and the
1163 : : // terminator still does not match. Abort.
1164 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1165 : 0 : return false;
1166 : : } else {
1167 : : // We still need to receive more garbage and/or garbage terminator bytes.
1168 : : }
1169 : : } else {
1170 : : // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1171 : : // more first.
1172 : : }
1173 : : return true;
1174 : : }
1175 : :
1176 : 0 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
1177 : : {
1178 : 0 : AssertLockHeld(m_recv_mutex);
1179 : 0 : Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1180 : :
1181 : : // The maximum permitted contents length for a packet, consisting of:
1182 : : // - 0x00 byte: indicating long message type encoding
1183 : : // - 12 bytes of message type
1184 : : // - payload
1185 : 0 : static constexpr size_t MAX_CONTENTS_LEN =
1186 : : 1 + CMessageHeader::COMMAND_SIZE +
1187 : : std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1188 : :
1189 [ # # ]: 0 : if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1190 : : // Length descriptor received.
1191 : 0 : m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1192 [ # # ]: 0 : if (m_recv_len > MAX_CONTENTS_LEN) {
1193 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1194 : 0 : return false;
1195 : : }
1196 [ # # # # ]: 0 : } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1197 : : // Ciphertext received, decrypt it into m_recv_decode_buffer.
1198 : : // Note that it is impossible to reach this branch without hitting the branch above first,
1199 : : // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1200 : 0 : m_recv_decode_buffer.resize(m_recv_len);
1201 : 0 : bool ignore{false};
1202 : 0 : bool ret = m_cipher.Decrypt(
1203 : 0 : /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1204 : 0 : /*aad=*/MakeByteSpan(m_recv_aad),
1205 : : /*ignore=*/ignore,
1206 : : /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1207 [ # # ]: 0 : if (!ret) {
1208 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1209 : 0 : return false;
1210 : : }
1211 : : // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1212 : 0 : ClearShrink(m_recv_aad);
1213 : : // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1214 : 0 : RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1215 : :
1216 : : // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1217 : : // decoy, which we simply ignore, use the current state to decide what to do with it.
1218 [ # # ]: 0 : if (!ignore) {
1219 [ # # # ]: 0 : switch (m_recv_state) {
1220 : 0 : case RecvState::VERSION:
1221 : : // Version message received; transition to application phase. The contents is
1222 : : // ignored, but can be used for future extensions.
1223 : 0 : SetReceiveState(RecvState::APP);
1224 : 0 : break;
1225 : 0 : case RecvState::APP:
1226 : : // Application message decrypted correctly. It can be extracted using GetMessage().
1227 : 0 : SetReceiveState(RecvState::APP_READY);
1228 : 0 : break;
1229 : 0 : default:
1230 : : // Any other state is invalid (this function should not have been called).
1231 : 0 : Assume(false);
1232 : : }
1233 : : }
1234 : : // Wipe the receive buffer where the next packet will be received into.
1235 : 0 : ClearShrink(m_recv_buffer);
1236 : : // In all but APP_READY state, we can wipe the decoded contents.
1237 [ # # ]: 0 : if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1238 : : } else {
1239 : : // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1240 : : // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1241 : : }
1242 : : return true;
1243 : : }
1244 : :
1245 : 0 : size_t V2Transport::GetMaxBytesToProcess() noexcept
1246 : : {
1247 : 0 : AssertLockHeld(m_recv_mutex);
1248 [ # # # # : 0 : switch (m_recv_state) {
# # # ]
1249 : 0 : case RecvState::KEY_MAYBE_V1:
1250 : : // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1251 : : // receive buffer.
1252 : 0 : Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1253 : : // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1254 : : // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1255 : : // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1256 : : // back into the m_v1_fallback V1 transport.
1257 : 0 : return V1_PREFIX_LEN - m_recv_buffer.size();
1258 : 0 : case RecvState::KEY:
1259 : : // During the KEY state, we only allow the 64-byte key into the receive buffer.
1260 : 0 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1261 : : // As long as we have not received the other side's public key, don't receive more than
1262 : : // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1263 : : // key exchange first.
1264 : 0 : return EllSwiftPubKey::size() - m_recv_buffer.size();
1265 : : case RecvState::GARB_GARBTERM:
1266 : : // Process garbage bytes one by one (because terminator may appear anywhere).
1267 : : return 1;
1268 : 0 : case RecvState::VERSION:
1269 : 0 : case RecvState::APP:
1270 : : // These three states all involve decoding a packet. Process the length descriptor first,
1271 : : // so that we know where the current packet ends (and we don't process bytes from the next
1272 : : // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1273 [ # # ]: 0 : if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1274 : 0 : return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1275 : : } else {
1276 : : // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1277 : : // and encoded packet size, which includes the 3 bytes due to the packet length.
1278 : : // When transitioning from receiving the packet length to receiving its ciphertext,
1279 : : // the encrypted packet length is left in the receive buffer.
1280 : 0 : return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1281 : : }
1282 : 0 : case RecvState::APP_READY:
1283 : : // No bytes can be processed until GetMessage() is called.
1284 : 0 : return 0;
1285 : 0 : case RecvState::V1:
1286 : : // Not allowed (must be dealt with by the caller).
1287 : 0 : Assume(false);
1288 : 0 : return 0;
1289 : : }
1290 : 0 : Assume(false); // unreachable
1291 : 0 : return 0;
1292 : : }
1293 : :
1294 : 0 : bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
1295 : : {
1296 : 0 : AssertLockNotHeld(m_recv_mutex);
1297 : : /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1298 : 0 : static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1299 : :
1300 : 0 : LOCK(m_recv_mutex);
1301 [ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1302 : :
1303 : : // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1304 : : // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1305 : : // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1306 : : // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1307 [ # # ]: 0 : while (!msg_bytes.empty()) {
1308 : : // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1309 : 0 : size_t max_read = GetMaxBytesToProcess();
1310 : :
1311 : : // Reserve space in the buffer if there is not enough.
1312 [ # # # # ]: 0 : if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1313 [ # # # # : 0 : switch (m_recv_state) {
# ]
1314 : 0 : case RecvState::KEY_MAYBE_V1:
1315 : 0 : case RecvState::KEY:
1316 : 0 : case RecvState::GARB_GARBTERM:
1317 : : // During the initial states (key/garbage), allocate once to fit the maximum (4111
1318 : : // bytes).
1319 : 0 : m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1320 : 0 : break;
1321 : 0 : case RecvState::VERSION:
1322 : 0 : case RecvState::APP: {
1323 : : // During states where a packet is being received, as much as is expected but never
1324 : : // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1325 : : // This means attackers that want to cause us to waste allocated memory are limited
1326 : : // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1327 : : // MAX_RESERVE_AHEAD more than they've actually sent us.
1328 [ # # ]: 0 : size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1329 : 0 : m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1330 : 0 : break;
1331 : : }
1332 : 0 : case RecvState::APP_READY:
1333 : : // The buffer is empty in this state.
1334 : 0 : Assume(m_recv_buffer.empty());
1335 : 0 : break;
1336 : 0 : case RecvState::V1:
1337 : : // Should have bailed out above.
1338 : 0 : Assume(false);
1339 : 0 : break;
1340 : : }
1341 : : }
1342 : :
1343 : : // Can't read more than provided input.
1344 [ # # ]: 0 : max_read = std::min(msg_bytes.size(), max_read);
1345 : : // Copy data to buffer.
1346 : 0 : m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1347 [ # # # # : 0 : msg_bytes = msg_bytes.subspan(max_read);
# # # ]
1348 : :
1349 : : // Process data in the buffer.
1350 [ # # # # : 0 : switch (m_recv_state) {
# # # ]
1351 : 0 : case RecvState::KEY_MAYBE_V1:
1352 : 0 : ProcessReceivedMaybeV1Bytes();
1353 [ # # ]: 0 : if (m_recv_state == RecvState::V1) return true;
1354 : : break;
1355 : :
1356 : 0 : case RecvState::KEY:
1357 [ # # ]: 0 : if (!ProcessReceivedKeyBytes()) return false;
1358 : : break;
1359 : :
1360 : 0 : case RecvState::GARB_GARBTERM:
1361 [ # # ]: 0 : if (!ProcessReceivedGarbageBytes()) return false;
1362 : : break;
1363 : :
1364 : 0 : case RecvState::VERSION:
1365 : 0 : case RecvState::APP:
1366 [ # # ]: 0 : if (!ProcessReceivedPacketBytes()) return false;
1367 : : break;
1368 : :
1369 : : case RecvState::APP_READY:
1370 : : return true;
1371 : :
1372 : 0 : case RecvState::V1:
1373 : : // We should have bailed out before.
1374 : 0 : Assume(false);
1375 : 0 : break;
1376 : : }
1377 : : // Make sure we have made progress before continuing.
1378 : 0 : Assume(max_read > 0);
1379 : : }
1380 : :
1381 : : return true;
1382 : 0 : }
1383 : :
1384 : 0 : std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1385 : : {
1386 [ # # ]: 0 : if (contents.size() == 0) return std::nullopt; // Empty contents
1387 [ # # ]: 0 : uint8_t first_byte = contents[0];
1388 [ # # ]: 0 : contents = contents.subspan(1); // Strip first byte.
1389 : :
1390 [ # # ]: 0 : if (first_byte != 0) {
1391 : : // Short (1 byte) encoding.
1392 [ # # ]: 0 : if (first_byte < std::size(V2_MESSAGE_IDS)) {
1393 : : // Valid short message id.
1394 : 0 : return V2_MESSAGE_IDS[first_byte];
1395 : : } else {
1396 : : // Unknown short message id.
1397 : 0 : return std::nullopt;
1398 : : }
1399 : : }
1400 : :
1401 [ # # ]: 0 : if (contents.size() < CMessageHeader::COMMAND_SIZE) {
1402 : 0 : return std::nullopt; // Long encoding needs 12 message type bytes.
1403 : : }
1404 : :
1405 : : size_t msg_type_len{0};
1406 [ # # # # ]: 0 : while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
1407 : : // Verify that message type bytes before the first 0x00 are in range.
1408 [ # # # # ]: 0 : if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1409 : 0 : return {};
1410 : : }
1411 : 0 : ++msg_type_len;
1412 : : }
1413 : 0 : std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1414 [ # # ]: 0 : while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
1415 : : // Verify that message type bytes after the first 0x00 are also 0x00.
1416 [ # # ]: 0 : if (contents[msg_type_len] != 0) return {};
1417 : 0 : ++msg_type_len;
1418 : : }
1419 : : // Strip message type bytes of contents.
1420 : 0 : contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
1421 : 0 : return ret;
1422 : 0 : }
1423 : :
1424 : 0 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1425 : : {
1426 : 0 : AssertLockNotHeld(m_recv_mutex);
1427 : 0 : LOCK(m_recv_mutex);
1428 [ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1429 : :
1430 : 0 : Assume(m_recv_state == RecvState::APP_READY);
1431 : 0 : Span<const uint8_t> contents{m_recv_decode_buffer};
1432 : 0 : auto msg_type = GetMessageType(contents);
1433 : 0 : CNetMessage msg{DataStream{}};
1434 : : // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1435 [ # # ]: 0 : msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1436 [ # # ]: 0 : if (msg_type) {
1437 : 0 : reject_message = false;
1438 : 0 : msg.m_type = std::move(*msg_type);
1439 : 0 : msg.m_time = time;
1440 : 0 : msg.m_message_size = contents.size();
1441 : 0 : msg.m_recv.resize(contents.size());
1442 : 0 : std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1443 : : } else {
1444 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1445 : 0 : reject_message = true;
1446 : : }
1447 : 0 : ClearShrink(m_recv_decode_buffer);
1448 : 0 : SetReceiveState(RecvState::APP);
1449 : :
1450 : 0 : return msg;
1451 : 0 : }
1452 : :
1453 : 0 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1454 : : {
1455 : 0 : AssertLockNotHeld(m_send_mutex);
1456 : 0 : LOCK(m_send_mutex);
1457 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1458 : : // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1459 : : // is available) and the send buffer is empty. This limits the number of messages in the send
1460 : : // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1461 [ # # # # ]: 0 : if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1462 : : // Construct contents (encoding message type + payload).
1463 : 0 : std::vector<uint8_t> contents;
1464 : 0 : auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1465 [ # # ]: 0 : if (short_message_id) {
1466 : 0 : contents.resize(1 + msg.data.size());
1467 : 0 : contents[0] = *short_message_id;
1468 : 0 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1469 : : } else {
1470 : : // Initialize with zeroes, and then write the message type string starting at offset 1.
1471 : : // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1472 : 0 : contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
1473 : 0 : std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1474 : 0 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
1475 : : }
1476 : : // Construct ciphertext in send buffer.
1477 : 0 : m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1478 : 0 : m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1479 : 0 : m_send_type = msg.m_type;
1480 : : // Release memory
1481 : 0 : ClearShrink(msg.data);
1482 : 0 : return true;
1483 : 0 : }
1484 : :
1485 : 0 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1486 : : {
1487 : 0 : AssertLockNotHeld(m_send_mutex);
1488 : 0 : LOCK(m_send_mutex);
1489 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1490 : :
1491 [ # # ]: 0 : if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1492 : 0 : Assume(m_send_pos <= m_send_buffer.size());
1493 : 0 : return {
1494 [ # # ]: 0 : Span{m_send_buffer}.subspan(m_send_pos),
1495 : : // We only have more to send after the current m_send_buffer if there is a (next)
1496 : : // message to be sent, and we're capable of sending packets. */
1497 [ # # # # ]: 0 : have_next_message && m_send_state == SendState::READY,
1498 : 0 : m_send_type
1499 : 0 : };
1500 : 0 : }
1501 : :
1502 : 0 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1503 : : {
1504 : 0 : AssertLockNotHeld(m_send_mutex);
1505 : 0 : LOCK(m_send_mutex);
1506 [ # # # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1507 : :
1508 [ # # # # : 0 : if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
# # ]
1509 [ # # ]: 0 : LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1510 : : }
1511 : :
1512 : 0 : m_send_pos += bytes_sent;
1513 : 0 : Assume(m_send_pos <= m_send_buffer.size());
1514 [ # # ]: 0 : if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1515 : 0 : m_sent_v1_header_worth = true;
1516 : : }
1517 : : // Wipe the buffer when everything is sent.
1518 [ # # ]: 0 : if (m_send_pos == m_send_buffer.size()) {
1519 : 0 : m_send_pos = 0;
1520 : 0 : ClearShrink(m_send_buffer);
1521 : : }
1522 : 0 : }
1523 : :
1524 : 0 : bool V2Transport::ShouldReconnectV1() const noexcept
1525 : : {
1526 : 0 : AssertLockNotHeld(m_send_mutex);
1527 : 0 : AssertLockNotHeld(m_recv_mutex);
1528 : : // Only outgoing connections need reconnection.
1529 [ # # ]: 0 : if (!m_initiating) return false;
1530 : :
1531 : 0 : LOCK(m_recv_mutex);
1532 : : // We only reconnect in the very first state and when the receive buffer is empty. Together
1533 : : // these conditions imply nothing has been received so far.
1534 [ # # ]: 0 : if (m_recv_state != RecvState::KEY) return false;
1535 [ # # ]: 0 : if (!m_recv_buffer.empty()) return false;
1536 : : // Check if we've sent enough for the other side to disconnect us (if it was V1).
1537 : 0 : LOCK(m_send_mutex);
1538 [ # # ]: 0 : return m_sent_v1_header_worth;
1539 : 0 : }
1540 : :
1541 : 0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
1542 : : {
1543 : 0 : AssertLockNotHeld(m_send_mutex);
1544 : 0 : LOCK(m_send_mutex);
1545 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1546 : :
1547 [ # # ]: 0 : return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1548 : 0 : }
1549 : :
1550 : 0 : Transport::Info V2Transport::GetInfo() const noexcept
1551 : : {
1552 : 0 : AssertLockNotHeld(m_recv_mutex);
1553 : 0 : LOCK(m_recv_mutex);
1554 [ # # ]: 0 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1555 : :
1556 [ # # ]: 0 : Transport::Info info;
1557 : :
1558 : : // Do not report v2 and session ID until the version packet has been received
1559 : : // and verified (confirming that the other side very likely has the same keys as us).
1560 [ # # ]: 0 : if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1561 : : m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1562 : 0 : info.transport_type = TransportProtocolType::V2;
1563 : 0 : info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1564 : : } else {
1565 : 0 : info.transport_type = TransportProtocolType::DETECTING;
1566 : : }
1567 : :
1568 : 0 : return info;
1569 : 0 : }
1570 : :
1571 : 0 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1572 : : {
1573 : 0 : auto it = node.vSendMsg.begin();
1574 : 0 : size_t nSentSize = 0;
1575 : 0 : bool data_left{false}; //!< second return value (whether unsent data remains)
1576 : 0 : std::optional<bool> expected_more;
1577 : :
1578 : 0 : while (true) {
1579 [ # # ]: 0 : if (it != node.vSendMsg.end()) {
1580 : : // If possible, move one message from the send queue to the transport. This fails when
1581 : : // there is an existing message still being sent, or (for v2 transports) when the
1582 : : // handshake has not yet completed.
1583 : 0 : size_t memusage = it->GetMemoryUsage();
1584 [ # # ]: 0 : if (node.m_transport->SetMessageToSend(*it)) {
1585 : : // Update memory usage of send buffer (as *it will be deleted).
1586 : 0 : node.m_send_memusage -= memusage;
1587 : 0 : ++it;
1588 : : }
1589 : : }
1590 [ # # ]: 0 : const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1591 : : // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1592 : : // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1593 : : // verify that the previously returned 'more' was correct.
1594 [ # # ]: 0 : if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1595 [ # # ]: 0 : expected_more = more;
1596 [ # # ]: 0 : data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1597 : 0 : int nBytes = 0;
1598 [ # # ]: 0 : if (!data.empty()) {
1599 : 0 : LOCK(node.m_sock_mutex);
1600 : : // There is no socket in case we've already disconnected, or in test cases without
1601 : : // real connections. In these cases, we bail out immediately and just leave things
1602 : : // in the send queue and transport.
1603 [ # # ]: 0 : if (!node.m_sock) {
1604 : : break;
1605 : : }
1606 : 0 : int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1607 : : #ifdef MSG_MORE
1608 [ # # ]: 0 : if (more) {
1609 : 0 : flags |= MSG_MORE;
1610 : : }
1611 : : #endif
1612 [ # # # # ]: 0 : nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1613 : 0 : }
1614 [ # # ]: 0 : if (nBytes > 0) {
1615 : 0 : node.m_last_send = GetTime<std::chrono::seconds>();
1616 : 0 : node.nSendBytes += nBytes;
1617 : : // Notify transport that bytes have been processed.
1618 : 0 : node.m_transport->MarkBytesSent(nBytes);
1619 : : // Update statistics per message type.
1620 [ # # ]: 0 : if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1621 : 0 : node.AccountForSentBytes(msg_type, nBytes);
1622 : : }
1623 : 0 : nSentSize += nBytes;
1624 [ # # ]: 0 : if ((size_t)nBytes != data.size()) {
1625 : : // could not send full message; stop sending more
1626 : : break;
1627 : : }
1628 : : } else {
1629 [ # # ]: 0 : if (nBytes < 0) {
1630 : : // error
1631 : 0 : int nErr = WSAGetLastError();
1632 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1633 [ # # # # ]: 0 : LogDebug(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
1634 : 0 : node.CloseSocketDisconnect();
1635 : : }
1636 : : }
1637 : : break;
1638 : : }
1639 : : }
1640 : :
1641 [ # # ]: 0 : node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1642 : :
1643 [ # # ]: 0 : if (it == node.vSendMsg.end()) {
1644 [ # # ]: 0 : assert(node.m_send_memusage == 0);
1645 : : }
1646 : 0 : node.vSendMsg.erase(node.vSendMsg.begin(), it);
1647 : 0 : return {nSentSize, data_left};
1648 : : }
1649 : :
1650 : : /** Try to find a connection to evict when the node is full.
1651 : : * Extreme care must be taken to avoid opening the node to attacker
1652 : : * triggered network partitioning.
1653 : : * The strategy used here is to protect a small number of peers
1654 : : * for each of several distinct characteristics which are difficult
1655 : : * to forge. In order to partition a node the attacker must be
1656 : : * simultaneously better at all of them than honest peers.
1657 : : */
1658 : 0 : bool CConnman::AttemptToEvictConnection()
1659 : : {
1660 : 0 : std::vector<NodeEvictionCandidate> vEvictionCandidates;
1661 : 0 : {
1662 : :
1663 [ # # ]: 0 : LOCK(m_nodes_mutex);
1664 [ # # ]: 0 : for (const CNode* node : m_nodes) {
1665 [ # # ]: 0 : if (node->fDisconnect)
1666 : 0 : continue;
1667 : 0 : NodeEvictionCandidate candidate{
1668 : 0 : .id = node->GetId(),
1669 : : .m_connected = node->m_connected,
1670 : 0 : .m_min_ping_time = node->m_min_ping_time,
1671 : 0 : .m_last_block_time = node->m_last_block_time,
1672 : 0 : .m_last_tx_time = node->m_last_tx_time,
1673 [ # # ]: 0 : .fRelevantServices = node->m_has_all_wanted_services,
1674 : 0 : .m_relay_txs = node->m_relays_txs.load(),
1675 : 0 : .fBloomFilter = node->m_bloom_filter_loaded.load(),
1676 : 0 : .nKeyedNetGroup = node->nKeyedNetGroup,
1677 : 0 : .prefer_evict = node->m_prefer_evict,
1678 [ # # ]: 0 : .m_is_local = node->addr.IsLocal(),
1679 : 0 : .m_network = node->ConnectedThroughNetwork(),
1680 : 0 : .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1681 : 0 : .m_conn_type = node->m_conn_type,
1682 [ # # # # : 0 : };
# # ]
1683 [ # # ]: 0 : vEvictionCandidates.push_back(candidate);
1684 : : }
1685 : 0 : }
1686 [ # # ]: 0 : const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1687 [ # # ]: 0 : if (!node_id_to_evict) {
1688 : : return false;
1689 : : }
1690 [ # # ]: 0 : LOCK(m_nodes_mutex);
1691 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1692 [ # # ]: 0 : if (pnode->GetId() == *node_id_to_evict) {
1693 [ # # # # : 0 : LogDebug(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
# # # # ]
1694 : 0 : pnode->fDisconnect = true;
1695 : 0 : return true;
1696 : : }
1697 : : }
1698 : : return false;
1699 : 0 : }
1700 : :
1701 : 0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1702 : 0 : struct sockaddr_storage sockaddr;
1703 : 0 : socklen_t len = sizeof(sockaddr);
1704 : 0 : auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1705 [ # # ]: 0 : CAddress addr;
1706 : :
1707 [ # # ]: 0 : if (!sock) {
1708 : 0 : const int nErr = WSAGetLastError();
1709 [ # # ]: 0 : if (nErr != WSAEWOULDBLOCK) {
1710 [ # # # # ]: 0 : LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1711 : : }
1712 : 0 : return;
1713 : : }
1714 : :
1715 [ # # # # ]: 0 : if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
1716 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
# # ]
1717 : : } else {
1718 [ # # ]: 0 : addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
1719 : : }
1720 : :
1721 [ # # # # ]: 0 : const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
1722 : :
1723 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
1724 [ # # ]: 0 : hListenSocket.AddSocketPermissionFlags(permission_flags);
1725 : :
1726 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1727 : 0 : }
1728 : :
1729 : 0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1730 : : NetPermissionFlags permission_flags,
1731 : : const CAddress& addr_bind,
1732 : : const CAddress& addr)
1733 : : {
1734 : 0 : int nInbound = 0;
1735 : :
1736 : 0 : AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1737 : :
1738 : 0 : {
1739 : 0 : LOCK(m_nodes_mutex);
1740 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
1741 [ # # ]: 0 : if (pnode->IsInboundConn()) nInbound++;
1742 : : }
1743 : 0 : }
1744 : :
1745 [ # # ]: 0 : if (!fNetworkActive) {
1746 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1747 : 0 : return;
1748 : : }
1749 : :
1750 [ # # ]: 0 : if (!sock->IsSelectable()) {
1751 [ # # ]: 0 : LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1752 : 0 : return;
1753 : : }
1754 : :
1755 : : // According to the internet TCP_NODELAY is not carried into accepted sockets
1756 : : // on all platforms. Set it again here just to be sure.
1757 : 0 : const int on{1};
1758 [ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1759 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1760 : : addr.ToStringAddrPort());
1761 : : }
1762 : :
1763 : : // Don't accept connections from banned peers.
1764 [ # # # # ]: 0 : bool banned = m_banman && m_banman->IsBanned(addr);
1765 [ # # # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1766 : : {
1767 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1768 : 0 : return;
1769 : : }
1770 : :
1771 : : // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1772 [ # # # # ]: 0 : bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1773 [ # # # # : 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
# # ]
1774 : : {
1775 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1776 : 0 : return;
1777 : : }
1778 : :
1779 [ # # ]: 0 : if (nInbound >= m_max_inbound)
1780 : : {
1781 [ # # ]: 0 : if (!AttemptToEvictConnection()) {
1782 : : // No connection to evict, disconnect the new connection
1783 [ # # ]: 0 : LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1784 : 0 : return;
1785 : : }
1786 : : }
1787 : :
1788 : 0 : NodeId id = GetNewNodeId();
1789 : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1790 : :
1791 : 0 : const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1792 : : // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1793 : : // detected, so use it whenever we signal NODE_P2P_V2.
1794 : 0 : const bool use_v2transport(nLocalServices & NODE_P2P_V2);
1795 : :
1796 : 0 : CNode* pnode = new CNode(id,
1797 : : std::move(sock),
1798 : : addr,
1799 : : CalculateKeyedNetGroup(addr),
1800 : : nonce,
1801 : : addr_bind,
1802 : : /*addrNameIn=*/"",
1803 : : ConnectionType::INBOUND,
1804 : : inbound_onion,
1805 [ # # ]: 0 : CNodeOptions{
1806 : : .permission_flags = permission_flags,
1807 : : .prefer_evict = discouraged,
1808 : 0 : .recv_flood_size = nReceiveFloodSize,
1809 : : .use_v2transport = use_v2transport,
1810 [ # # # # : 0 : });
# # # # #
# ]
1811 : 0 : pnode->AddRef();
1812 : 0 : m_msgproc->InitializeNode(*pnode, nLocalServices);
1813 : 0 : {
1814 : 0 : LOCK(m_nodes_mutex);
1815 [ # # ]: 0 : m_nodes.push_back(pnode);
1816 : 0 : }
1817 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1818 : :
1819 : : // We received a new connection, harvest entropy from the time (and our peer count)
1820 : 0 : RandAddEvent((uint32_t)id);
1821 : : }
1822 : :
1823 : 0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1824 : : {
1825 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1826 : 0 : std::optional<int> max_connections;
1827 [ # # # # ]: 0 : switch (conn_type) {
1828 : : case ConnectionType::INBOUND:
1829 : : case ConnectionType::MANUAL:
1830 : : return false;
1831 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
1832 : 0 : max_connections = m_max_outbound_full_relay;
1833 : 0 : break;
1834 : 0 : case ConnectionType::BLOCK_RELAY:
1835 : 0 : max_connections = m_max_outbound_block_relay;
1836 : 0 : break;
1837 : : // no limit for ADDR_FETCH because -seednode has no limit either
1838 : : case ConnectionType::ADDR_FETCH:
1839 : : break;
1840 : : // no limit for FEELER connections since they're short-lived
1841 : : case ConnectionType::FEELER:
1842 : : break;
1843 : : } // no default case, so the compiler can warn about missing cases
1844 : :
1845 : : // Count existing connections
1846 [ # # # # ]: 0 : int existing_connections = WITH_LOCK(m_nodes_mutex,
1847 : : return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1848 : :
1849 : : // Max connections of specified type already exist
1850 [ # # ]: 0 : if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1851 : :
1852 : : // Max total outbound connections already exist
1853 : 0 : CSemaphoreGrant grant(*semOutbound, true);
1854 [ # # ]: 0 : if (!grant) return false;
1855 : :
1856 [ # # # # ]: 0 : OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1857 : 0 : return true;
1858 : : }
1859 : :
1860 : 0 : void CConnman::DisconnectNodes()
1861 : : {
1862 : 0 : AssertLockNotHeld(m_nodes_mutex);
1863 : 0 : AssertLockNotHeld(m_reconnections_mutex);
1864 : :
1865 : : // Use a temporary variable to accumulate desired reconnections, so we don't need
1866 : : // m_reconnections_mutex while holding m_nodes_mutex.
1867 [ # # ]: 0 : decltype(m_reconnections) reconnections_to_add;
1868 : :
1869 : 0 : {
1870 [ # # ]: 0 : LOCK(m_nodes_mutex);
1871 : :
1872 [ # # ]: 0 : if (!fNetworkActive) {
1873 : : // Disconnect any connected nodes
1874 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1875 [ # # ]: 0 : if (!pnode->fDisconnect) {
1876 [ # # # # : 0 : LogDebug(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
# # ]
1877 : 0 : pnode->fDisconnect = true;
1878 : : }
1879 : : }
1880 : : }
1881 : :
1882 : : // Disconnect unused nodes
1883 [ # # ]: 0 : std::vector<CNode*> nodes_copy = m_nodes;
1884 [ # # ]: 0 : for (CNode* pnode : nodes_copy)
1885 : : {
1886 [ # # ]: 0 : if (pnode->fDisconnect)
1887 : : {
1888 : : // remove from m_nodes
1889 : 0 : m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1890 : :
1891 : : // Add to reconnection list if appropriate. We don't reconnect right here, because
1892 : : // the creation of a connection is a blocking operation (up to several seconds),
1893 : : // and we don't want to hold up the socket handler thread for that long.
1894 [ # # ]: 0 : if (pnode->m_transport->ShouldReconnectV1()) {
1895 : 0 : reconnections_to_add.push_back({
1896 : 0 : .addr_connect = pnode->addr,
1897 [ # # ]: 0 : .grant = std::move(pnode->grantOutbound),
1898 : 0 : .destination = pnode->m_dest,
1899 : 0 : .conn_type = pnode->m_conn_type,
1900 : : .use_v2transport = false});
1901 [ # # # # : 0 : LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
# # ]
1902 : : }
1903 : :
1904 : : // release outbound grant (if any)
1905 : 0 : pnode->grantOutbound.Release();
1906 : :
1907 : : // close socket and cleanup
1908 [ # # ]: 0 : pnode->CloseSocketDisconnect();
1909 : :
1910 : : // update connection count by network
1911 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1912 : :
1913 : : // hold in disconnected pool until all refs are released
1914 [ # # ]: 0 : pnode->Release();
1915 [ # # ]: 0 : m_nodes_disconnected.push_back(pnode);
1916 : : }
1917 : : }
1918 [ # # ]: 0 : }
1919 : 0 : {
1920 : : // Delete disconnected nodes
1921 [ # # ]: 0 : std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1922 [ # # ]: 0 : for (CNode* pnode : nodes_disconnected_copy)
1923 : : {
1924 : : // Destroy the object only after other threads have stopped using it.
1925 [ # # ]: 0 : if (pnode->GetRefCount() <= 0) {
1926 : 0 : m_nodes_disconnected.remove(pnode);
1927 [ # # ]: 0 : DeleteNode(pnode);
1928 : : }
1929 : : }
1930 : 0 : }
1931 : 0 : {
1932 : : // Move entries from reconnections_to_add to m_reconnections.
1933 [ # # ]: 0 : LOCK(m_reconnections_mutex);
1934 [ # # ]: 0 : m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1935 : 0 : }
1936 [ # # # # : 0 : }
# # ]
1937 : :
1938 : 0 : void CConnman::NotifyNumConnectionsChanged()
1939 : : {
1940 : 0 : size_t nodes_size;
1941 : 0 : {
1942 : 0 : LOCK(m_nodes_mutex);
1943 [ # # ]: 0 : nodes_size = m_nodes.size();
1944 : 0 : }
1945 [ # # ]: 0 : if(nodes_size != nPrevNodeCount) {
1946 : 0 : nPrevNodeCount = nodes_size;
1947 [ # # ]: 0 : if (m_client_interface) {
1948 : 0 : m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1949 : : }
1950 : : }
1951 : 0 : }
1952 : :
1953 : 0 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1954 : : {
1955 : 0 : return node.m_connected + m_peer_connect_timeout < now;
1956 : : }
1957 : :
1958 : 0 : bool CConnman::InactivityCheck(const CNode& node) const
1959 : : {
1960 : : // Tests that see disconnects after using mocktime can start nodes with a
1961 : : // large timeout. For example, -peertimeout=999999999.
1962 : 0 : const auto now{GetTime<std::chrono::seconds>()};
1963 : 0 : const auto last_send{node.m_last_send.load()};
1964 : 0 : const auto last_recv{node.m_last_recv.load()};
1965 : :
1966 [ # # ]: 0 : if (!ShouldRunInactivityChecks(node, now)) return false;
1967 : :
1968 [ # # # # ]: 0 : if (last_recv.count() == 0 || last_send.count() == 0) {
1969 [ # # ]: 0 : LogDebug(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
1970 : 0 : return true;
1971 : : }
1972 : :
1973 [ # # ]: 0 : if (now > last_send + TIMEOUT_INTERVAL) {
1974 [ # # ]: 0 : LogDebug(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
1975 : 0 : return true;
1976 : : }
1977 : :
1978 [ # # ]: 0 : if (now > last_recv + TIMEOUT_INTERVAL) {
1979 [ # # ]: 0 : LogDebug(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
1980 : 0 : return true;
1981 : : }
1982 : :
1983 [ # # ]: 0 : if (!node.fSuccessfullyConnected) {
1984 [ # # ]: 0 : if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
1985 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 handshake timeout peer=%d\n", node.GetId());
1986 : : } else {
1987 [ # # ]: 0 : LogDebug(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
1988 : : }
1989 : 0 : return true;
1990 : : }
1991 : :
1992 : : return false;
1993 : : }
1994 : :
1995 : 0 : Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
1996 : : {
1997 : 0 : Sock::EventsPerSock events_per_sock;
1998 : :
1999 [ # # ]: 0 : for (const ListenSocket& hListenSocket : vhListenSocket) {
2000 [ # # ]: 0 : events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2001 : : }
2002 : :
2003 [ # # ]: 0 : for (CNode* pnode : nodes) {
2004 [ # # ]: 0 : bool select_recv = !pnode->fPauseRecv;
2005 : 0 : bool select_send;
2006 : 0 : {
2007 [ # # ]: 0 : LOCK(pnode->cs_vSend);
2008 : : // Sending is possible if either there are bytes to send right now, or if there will be
2009 : : // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2010 : : // determines both of these in a single call.
2011 [ # # ]: 0 : const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2012 [ # # # # : 0 : select_send = !to_send.empty() || more;
# # ]
2013 : 0 : }
2014 [ # # ]: 0 : if (!select_recv && !select_send) continue;
2015 : :
2016 [ # # ]: 0 : LOCK(pnode->m_sock_mutex);
2017 [ # # ]: 0 : if (pnode->m_sock) {
2018 [ # # # # ]: 0 : Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2019 [ # # ]: 0 : events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2020 : : }
2021 : 0 : }
2022 : :
2023 : 0 : return events_per_sock;
2024 : 0 : }
2025 : :
2026 : 0 : void CConnman::SocketHandler()
2027 : : {
2028 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2029 : :
2030 [ # # ]: 0 : Sock::EventsPerSock events_per_sock;
2031 : :
2032 : 0 : {
2033 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/false};
2034 : :
2035 : 0 : const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2036 : :
2037 : : // Check for the readiness of the already connected sockets and the
2038 : : // listening sockets in one call ("readiness" as in poll(2) or
2039 : : // select(2)). If none are ready, wait for a short while and return
2040 : : // empty sets.
2041 [ # # ]: 0 : events_per_sock = GenerateWaitSockets(snap.Nodes());
2042 [ # # # # : 0 : if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
# # ]
2043 [ # # ]: 0 : interruptNet.sleep_for(timeout);
2044 : : }
2045 : :
2046 : : // Service (send/receive) each of the already connected nodes.
2047 [ # # ]: 0 : SocketHandlerConnected(snap.Nodes(), events_per_sock);
2048 : 0 : }
2049 : :
2050 : : // Accept new connections from listening sockets.
2051 [ # # ]: 0 : SocketHandlerListening(events_per_sock);
2052 : 0 : }
2053 : :
2054 : 0 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2055 : : const Sock::EventsPerSock& events_per_sock)
2056 : : {
2057 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2058 : :
2059 [ # # ]: 0 : for (CNode* pnode : nodes) {
2060 [ # # ]: 0 : if (interruptNet)
2061 : : return;
2062 : :
2063 : : //
2064 : : // Receive
2065 : : //
2066 : 0 : bool recvSet = false;
2067 : 0 : bool sendSet = false;
2068 : 0 : bool errorSet = false;
2069 : 0 : {
2070 : 0 : LOCK(pnode->m_sock_mutex);
2071 [ # # ]: 0 : if (!pnode->m_sock) {
2072 [ # # ]: 0 : continue;
2073 : : }
2074 [ # # # # ]: 0 : const auto it = events_per_sock.find(pnode->m_sock);
2075 [ # # ]: 0 : if (it != events_per_sock.end()) {
2076 : 0 : recvSet = it->second.occurred & Sock::RECV;
2077 : 0 : sendSet = it->second.occurred & Sock::SEND;
2078 : 0 : errorSet = it->second.occurred & Sock::ERR;
2079 : : }
2080 : 0 : }
2081 : :
2082 [ # # ]: 0 : if (sendSet) {
2083 : : // Send data
2084 [ # # # # ]: 0 : auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2085 [ # # ]: 0 : if (bytes_sent) {
2086 : 0 : RecordBytesSent(bytes_sent);
2087 : :
2088 : : // If both receiving and (non-optimistic) sending were possible, we first attempt
2089 : : // sending. If that succeeds, but does not fully drain the send queue, do not
2090 : : // attempt to receive. This avoids needlessly queueing data if the remote peer
2091 : : // is slow at receiving data, by means of TCP flow control. We only do this when
2092 : : // sending actually succeeded to make sure progress is always made; otherwise a
2093 : : // deadlock would be possible when both sides have data to send, but neither is
2094 : : // receiving.
2095 [ # # ]: 0 : if (data_left) recvSet = false;
2096 : : }
2097 : : }
2098 : :
2099 [ # # ]: 0 : if (recvSet || errorSet)
2100 : : {
2101 : : // typical socket buffer is 8K-64K
2102 : 0 : uint8_t pchBuf[0x10000];
2103 : 0 : int nBytes = 0;
2104 : 0 : {
2105 : 0 : LOCK(pnode->m_sock_mutex);
2106 [ # # ]: 0 : if (!pnode->m_sock) {
2107 [ # # ]: 0 : continue;
2108 : : }
2109 [ # # # # ]: 0 : nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2110 : 0 : }
2111 [ # # ]: 0 : if (nBytes > 0)
2112 : : {
2113 : 0 : bool notify = false;
2114 [ # # ]: 0 : if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2115 : 0 : pnode->CloseSocketDisconnect();
2116 : : }
2117 : 0 : RecordBytesRecv(nBytes);
2118 [ # # ]: 0 : if (notify) {
2119 : 0 : pnode->MarkReceivedMsgsForProcessing();
2120 : 0 : WakeMessageHandler();
2121 : : }
2122 : : }
2123 [ # # ]: 0 : else if (nBytes == 0)
2124 : : {
2125 : : // socket closed gracefully
2126 [ # # ]: 0 : if (!pnode->fDisconnect) {
2127 [ # # ]: 0 : LogDebug(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
2128 : : }
2129 : 0 : pnode->CloseSocketDisconnect();
2130 : : }
2131 [ # # ]: 0 : else if (nBytes < 0)
2132 : : {
2133 : : // error
2134 : 0 : int nErr = WSAGetLastError();
2135 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2136 : : {
2137 [ # # ]: 0 : if (!pnode->fDisconnect) {
2138 [ # # # # ]: 0 : LogDebug(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
2139 : : }
2140 : 0 : pnode->CloseSocketDisconnect();
2141 : : }
2142 : : }
2143 : : }
2144 : :
2145 [ # # ]: 0 : if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2146 : : }
2147 : : }
2148 : :
2149 : 0 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2150 : : {
2151 [ # # ]: 0 : for (const ListenSocket& listen_socket : vhListenSocket) {
2152 [ # # ]: 0 : if (interruptNet) {
2153 : : return;
2154 : : }
2155 [ # # # # ]: 0 : const auto it = events_per_sock.find(listen_socket.sock);
2156 [ # # # # ]: 0 : if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2157 : 0 : AcceptConnection(listen_socket);
2158 : : }
2159 : : }
2160 : : }
2161 : :
2162 : 0 : void CConnman::ThreadSocketHandler()
2163 : : {
2164 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2165 : :
2166 [ # # ]: 0 : while (!interruptNet)
2167 : : {
2168 : 0 : DisconnectNodes();
2169 : 0 : NotifyNumConnectionsChanged();
2170 : 0 : SocketHandler();
2171 : : }
2172 : 0 : }
2173 : :
2174 : 0 : void CConnman::WakeMessageHandler()
2175 : : {
2176 : 0 : {
2177 : 0 : LOCK(mutexMsgProc);
2178 [ # # ]: 0 : fMsgProcWake = true;
2179 : 0 : }
2180 : 0 : condMsgProc.notify_one();
2181 : 0 : }
2182 : :
2183 : 0 : void CConnman::ThreadDNSAddressSeed()
2184 : : {
2185 : 0 : int outbound_connection_count = 0;
2186 : :
2187 [ # # # # ]: 0 : if (gArgs.IsArgSet("-seednode")) {
2188 : 0 : auto start = NodeClock::now();
2189 : 0 : constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2190 : 0 : LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2191 [ # # ]: 0 : while (!interruptNet) {
2192 [ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2193 : : return;
2194 : :
2195 : : // Abort if we have spent enough time without reaching our target.
2196 : : // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2197 [ # # ]: 0 : if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2198 : 0 : LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2199 : 0 : break;
2200 : : }
2201 : :
2202 : 0 : outbound_connection_count = GetFullOutboundConnCount();
2203 [ # # ]: 0 : if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2204 : 0 : LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2205 : 0 : break;
2206 : : }
2207 : : }
2208 : : }
2209 : :
2210 : 0 : FastRandomContext rng;
2211 [ # # ]: 0 : std::vector<std::string> seeds = m_params.DNSSeeds();
2212 : 0 : std::shuffle(seeds.begin(), seeds.end(), rng);
2213 : 0 : int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2214 : :
2215 [ # # # # : 0 : if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
# # ]
2216 : : // When -forcednsseed is provided, query all.
2217 : 0 : seeds_right_now = seeds.size();
2218 [ # # # # ]: 0 : } else if (addrman.Size() == 0) {
2219 : : // If we have no known peers, query all.
2220 : : // This will occur on the first run, or if peers.dat has been
2221 : : // deleted.
2222 : 0 : seeds_right_now = seeds.size();
2223 : : }
2224 : :
2225 : : // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2226 [ # # ]: 0 : if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2227 : : // goal: only query DNS seed if address need is acute
2228 : : // * If we have a reasonable number of peers in addrman, spend
2229 : : // some time trying them first. This improves user privacy by
2230 : : // creating fewer identifying DNS requests, reduces trust by
2231 : : // giving seeds less influence on the network topology, and
2232 : : // reduces traffic to the seeds.
2233 : : // * When querying DNS seeds query a few at once, this ensures
2234 : : // that we don't give DNS seeds the ability to eclipse nodes
2235 : : // that query them.
2236 : : // * If we continue having problems, eventually query all the
2237 : : // DNS seeds, and if that fails too, also try the fixed seeds.
2238 : : // (done in ThreadOpenConnections)
2239 : 0 : int found = 0;
2240 [ # # # # ]: 0 : const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2241 : :
2242 [ # # ]: 0 : for (const std::string& seed : seeds) {
2243 [ # # ]: 0 : if (seeds_right_now == 0) {
2244 : 0 : seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2245 : :
2246 [ # # # # ]: 0 : if (addrman.Size() > 0) {
2247 [ # # ]: 0 : LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2248 : 0 : std::chrono::seconds to_wait = seeds_wait_time;
2249 [ # # ]: 0 : while (to_wait.count() > 0) {
2250 : : // if sleeping for the MANY_PEERS interval, wake up
2251 : : // early to see if we have enough peers and can stop
2252 : : // this thread entirely freeing up its resources
2253 : 0 : std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2254 [ # # # # ]: 0 : if (!interruptNet.sleep_for(w)) return;
2255 [ # # ]: 0 : to_wait -= w;
2256 : :
2257 [ # # # # ]: 0 : if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2258 [ # # ]: 0 : if (found > 0) {
2259 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2260 [ # # ]: 0 : LogPrintf("P2P peers available. Finished DNS seeding.\n");
2261 : : } else {
2262 [ # # ]: 0 : LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2263 : : }
2264 : 0 : return;
2265 : : }
2266 : : }
2267 : : }
2268 : : }
2269 : :
2270 [ # # # # ]: 0 : if (interruptNet) return;
2271 : :
2272 : : // hold off on querying seeds if P2P network deactivated
2273 [ # # ]: 0 : if (!fNetworkActive) {
2274 [ # # ]: 0 : LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2275 : 0 : do {
2276 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2277 [ # # ]: 0 : } while (!fNetworkActive);
2278 : : }
2279 : :
2280 [ # # ]: 0 : LogPrintf("Loading addresses from DNS seed %s\n", seed);
2281 : : // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2282 : : // for the base dns seed domain in chainparams
2283 [ # # # # ]: 0 : if (HaveNameProxy()) {
2284 [ # # ]: 0 : AddAddrFetch(seed);
2285 : : } else {
2286 : 0 : std::vector<CAddress> vAdd;
2287 : 0 : constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2288 [ # # ]: 0 : std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2289 [ # # ]: 0 : CNetAddr resolveSource;
2290 [ # # # # ]: 0 : if (!resolveSource.SetInternal(host)) {
2291 : 0 : continue;
2292 : : }
2293 : : // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2294 : : // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2295 : : // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2296 : : // returned.
2297 : 0 : unsigned int nMaxIPs = 32;
2298 [ # # # # ]: 0 : const auto addresses{LookupHost(host, nMaxIPs, true)};
2299 [ # # ]: 0 : if (!addresses.empty()) {
2300 [ # # ]: 0 : for (const CNetAddr& ip : addresses) {
2301 [ # # ]: 0 : CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2302 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2303 [ # # ]: 0 : vAdd.push_back(addr);
2304 : 0 : found++;
2305 : 0 : }
2306 [ # # ]: 0 : addrman.Add(vAdd, resolveSource);
2307 : : } else {
2308 : : // If the seed does not support a subdomain with our desired service bits,
2309 : : // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2310 : : // base dns seed domain in chainparams
2311 [ # # ]: 0 : AddAddrFetch(seed);
2312 : : }
2313 : 0 : }
2314 : 0 : --seeds_right_now;
2315 : : }
2316 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2317 : : } else {
2318 [ # # ]: 0 : LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2319 : : }
2320 : 0 : }
2321 : :
2322 : 0 : void CConnman::DumpAddresses()
2323 : : {
2324 : 0 : const auto start{SteadyClock::now()};
2325 : :
2326 : 0 : DumpPeerAddresses(::gArgs, addrman);
2327 : :
2328 [ # # ]: 0 : LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2329 : : addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2330 : 0 : }
2331 : :
2332 : 0 : void CConnman::ProcessAddrFetch()
2333 : : {
2334 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2335 [ # # ]: 0 : std::string strDest;
2336 : 0 : {
2337 [ # # ]: 0 : LOCK(m_addr_fetches_mutex);
2338 [ # # ]: 0 : if (m_addr_fetches.empty())
2339 [ # # ]: 0 : return;
2340 [ # # ]: 0 : strDest = m_addr_fetches.front();
2341 [ # # ]: 0 : m_addr_fetches.pop_front();
2342 : 0 : }
2343 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2344 : : // peer doesn't support it or immediately disconnects us for another reason.
2345 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2346 [ # # ]: 0 : CAddress addr;
2347 : 0 : CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2348 [ # # ]: 0 : if (grant) {
2349 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2350 : : }
2351 : 0 : }
2352 : :
2353 : 0 : bool CConnman::GetTryNewOutboundPeer() const
2354 : : {
2355 : 0 : return m_try_another_outbound_peer;
2356 : : }
2357 : :
2358 : 1 : void CConnman::SetTryNewOutboundPeer(bool flag)
2359 : : {
2360 : 1 : m_try_another_outbound_peer = flag;
2361 [ - + - - ]: 1 : LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2362 : 1 : }
2363 : :
2364 : 0 : void CConnman::StartExtraBlockRelayPeers()
2365 : : {
2366 [ # # ]: 0 : LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2367 : 0 : m_start_extra_block_relay_peers = true;
2368 : 0 : }
2369 : :
2370 : : // Return the number of outbound connections that are full relay (not blocks only)
2371 : 0 : int CConnman::GetFullOutboundConnCount() const
2372 : : {
2373 : 0 : int nRelevant = 0;
2374 : 0 : {
2375 : 0 : LOCK(m_nodes_mutex);
2376 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2377 [ # # # # ]: 0 : if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2378 : : }
2379 : 0 : }
2380 : 0 : return nRelevant;
2381 : : }
2382 : :
2383 : : // Return the number of peers we have over our outbound connection limit
2384 : : // Exclude peers that are marked for disconnect, or are going to be
2385 : : // disconnected soon (eg ADDR_FETCH and FEELER)
2386 : : // Also exclude peers that haven't finished initial connection handshake yet
2387 : : // (so that we don't decide we're over our desired connection limit, and then
2388 : : // evict some peer that has finished the handshake)
2389 : 0 : int CConnman::GetExtraFullOutboundCount() const
2390 : : {
2391 : 0 : int full_outbound_peers = 0;
2392 : 0 : {
2393 : 0 : LOCK(m_nodes_mutex);
2394 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2395 [ # # # # : 0 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
# # ]
2396 : 0 : ++full_outbound_peers;
2397 : : }
2398 : : }
2399 : 0 : }
2400 [ # # ]: 0 : return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2401 : : }
2402 : :
2403 : 0 : int CConnman::GetExtraBlockRelayCount() const
2404 : : {
2405 : 0 : int block_relay_peers = 0;
2406 : 0 : {
2407 : 0 : LOCK(m_nodes_mutex);
2408 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2409 [ # # # # : 0 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
# # ]
2410 : 0 : ++block_relay_peers;
2411 : : }
2412 : : }
2413 : 0 : }
2414 [ # # ]: 0 : return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2415 : : }
2416 : :
2417 : 0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2418 : : {
2419 : 0 : std::unordered_set<Network> networks{};
2420 [ # # ]: 0 : for (int n = 0; n < NET_MAX; n++) {
2421 : 0 : enum Network net = (enum Network)n;
2422 [ # # ]: 0 : if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2423 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
# # # # ]
2424 [ # # ]: 0 : networks.insert(net);
2425 : : }
2426 : : }
2427 : 0 : return networks;
2428 : 0 : }
2429 : :
2430 : 0 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2431 : : {
2432 : 0 : AssertLockHeld(m_nodes_mutex);
2433 : 0 : return m_network_conn_counts[net] > 1;
2434 : : }
2435 : :
2436 : 0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2437 : : {
2438 : 0 : std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2439 : 0 : std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2440 : :
2441 : 0 : LOCK(m_nodes_mutex);
2442 [ # # ]: 0 : for (const auto net : nets) {
2443 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
# # # # #
# ]
2444 : 0 : network = net;
2445 : 0 : return true;
2446 : : }
2447 : : }
2448 : :
2449 : : return false;
2450 : 0 : }
2451 : :
2452 : 0 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, Span<const std::string> seed_nodes)
2453 : : {
2454 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2455 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2456 : 0 : FastRandomContext rng;
2457 : : // Connect to specific addresses
2458 [ # # ]: 0 : if (!connect.empty())
2459 : : {
2460 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2461 : : // peer doesn't support it or immediately disconnects us for another reason.
2462 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2463 : 0 : for (int64_t nLoop = 0;; nLoop++)
2464 : : {
2465 [ # # ]: 0 : for (const std::string& strAddr : connect)
2466 : : {
2467 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2468 [ # # ]: 0 : OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2469 [ # # # # ]: 0 : for (int i = 0; i < 10 && i < nLoop; i++)
2470 : : {
2471 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2472 : 0 : return;
2473 : : }
2474 : 0 : }
2475 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2476 : : return;
2477 [ # # ]: 0 : PerformReconnections();
2478 : 0 : }
2479 : : }
2480 : :
2481 : : // Initiate network connections
2482 : 0 : auto start = GetTime<std::chrono::microseconds>();
2483 : :
2484 : : // Minimum time before next feeler connection (in microseconds).
2485 : 0 : auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2486 : 0 : auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2487 [ # # ]: 0 : auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2488 [ # # # # ]: 0 : const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2489 [ # # # # ]: 0 : bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2490 [ # # # # ]: 0 : const bool use_seednodes{gArgs.IsArgSet("-seednode")};
2491 : :
2492 : 0 : auto seed_node_timer = NodeClock::now();
2493 [ # # # # : 0 : bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
# # ]
2494 : 0 : constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2495 : :
2496 [ # # ]: 0 : if (!add_fixed_seeds) {
2497 [ # # ]: 0 : LogPrintf("Fixed seeds are disabled\n");
2498 : : }
2499 : :
2500 [ # # # # ]: 0 : while (!interruptNet)
2501 : : {
2502 [ # # ]: 0 : if (add_addr_fetch) {
2503 : 0 : add_addr_fetch = false;
2504 : 0 : const auto& seed{SpanPopBack(seed_nodes)};
2505 [ # # ]: 0 : AddAddrFetch(seed);
2506 : :
2507 [ # # # # ]: 0 : if (addrman.Size() == 0) {
2508 [ # # ]: 0 : LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2509 : : } else {
2510 [ # # ]: 0 : LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2511 : : }
2512 : : }
2513 : :
2514 [ # # ]: 0 : ProcessAddrFetch();
2515 : :
2516 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2517 : : return;
2518 : :
2519 [ # # ]: 0 : PerformReconnections();
2520 : :
2521 : 0 : CSemaphoreGrant grant(*semOutbound);
2522 [ # # # # ]: 0 : if (interruptNet)
2523 : : return;
2524 : :
2525 [ # # ]: 0 : const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2526 [ # # # # ]: 0 : if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2527 : : // When the node starts with an empty peers.dat, there are a few other sources of peers before
2528 : : // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2529 : : // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2530 : : // 60 seconds for any of those sources to populate addrman.
2531 : 0 : bool add_fixed_seeds_now = false;
2532 : : // It is cheapest to check if enough time has passed first.
2533 [ # # ]: 0 : if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2534 : 0 : add_fixed_seeds_now = true;
2535 [ # # ]: 0 : LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2536 : : }
2537 : :
2538 : : // Perform cheap checks before locking a mutex.
2539 [ # # ]: 0 : else if (!dnsseed && !use_seednodes) {
2540 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
2541 [ # # ]: 0 : if (m_added_node_params.empty()) {
2542 : 0 : add_fixed_seeds_now = true;
2543 [ # # ]: 0 : LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2544 : : }
2545 : 0 : }
2546 : :
2547 [ # # ]: 0 : if (add_fixed_seeds_now) {
2548 [ # # ]: 0 : std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2549 : : // We will not make outgoing connections to peers that are unreachable
2550 : : // (e.g. because of -onlynet configuration).
2551 : : // Therefore, we do not add them to addrman in the first place.
2552 : : // In case previously unreachable networks become reachable
2553 : : // (e.g. in case of -onlynet changes by the user), fixed seeds will
2554 : : // be loaded only for networks for which we have no addresses.
2555 [ # # ]: 0 : seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2556 : 0 : [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2557 [ # # ]: 0 : seed_addrs.end());
2558 [ # # ]: 0 : CNetAddr local;
2559 [ # # # # ]: 0 : local.SetInternal("fixedseeds");
2560 [ # # ]: 0 : addrman.Add(seed_addrs, local);
2561 : 0 : add_fixed_seeds = false;
2562 [ # # ]: 0 : LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2563 : 0 : }
2564 : : }
2565 : :
2566 : : //
2567 : : // Choose an address to connect to based on most recently seen
2568 : : //
2569 [ # # ]: 0 : CAddress addrConnect;
2570 : :
2571 : : // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2572 : 0 : int nOutboundFullRelay = 0;
2573 : 0 : int nOutboundBlockRelay = 0;
2574 : 0 : int outbound_privacy_network_peers = 0;
2575 [ # # ]: 0 : std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2576 : :
2577 : 0 : {
2578 [ # # ]: 0 : LOCK(m_nodes_mutex);
2579 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2580 [ # # ]: 0 : if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2581 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2582 : :
2583 : : // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2584 [ # # ]: 0 : switch (pnode->m_conn_type) {
2585 : : // We currently don't take inbound connections into account. Since they are
2586 : : // free to make, an attacker could make them to prevent us from connecting to
2587 : : // certain peers.
2588 : : case ConnectionType::INBOUND:
2589 : : // Short-lived outbound connections should not affect how we select outbound
2590 : : // peers from addrman.
2591 : : case ConnectionType::ADDR_FETCH:
2592 : : case ConnectionType::FEELER:
2593 : : break;
2594 : 0 : case ConnectionType::MANUAL:
2595 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
2596 : 0 : case ConnectionType::BLOCK_RELAY:
2597 : 0 : const CAddress address{pnode->addr};
2598 [ # # # # : 0 : if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
# # ]
2599 : : // Since our addrman-groups for these networks are
2600 : : // random, without relation to the route we
2601 : : // take to connect to these peers or to the
2602 : : // difficulty in obtaining addresses with diverse
2603 : : // groups, we don't worry about diversity with
2604 : : // respect to our addrman groups when connecting to
2605 : : // these networks.
2606 : 0 : ++outbound_privacy_network_peers;
2607 : : } else {
2608 [ # # # # ]: 0 : outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2609 : : }
2610 : : } // no default case, so the compiler can warn about missing cases
2611 : : }
2612 : 0 : }
2613 : :
2614 [ # # # # ]: 0 : if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2615 [ # # ]: 0 : if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2616 : 0 : seed_node_timer = NodeClock::now();
2617 : 0 : add_addr_fetch = true;
2618 : : }
2619 : : }
2620 : :
2621 : 0 : ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2622 : 0 : auto now = GetTime<std::chrono::microseconds>();
2623 : 0 : bool anchor = false;
2624 : 0 : bool fFeeler = false;
2625 : 0 : std::optional<Network> preferred_net;
2626 : :
2627 : : // Determine what type of connection to open. Opening
2628 : : // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2629 : : // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2630 : : // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2631 : : // until we hit our block-relay-only peer limit.
2632 : : // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2633 : : // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2634 : : // these conditions are met, check to see if it's time to try an extra
2635 : : // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2636 : : // timer to decide if we should open a FEELER.
2637 : :
2638 [ # # # # ]: 0 : if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2639 : : conn_type = ConnectionType::BLOCK_RELAY;
2640 : : anchor = true;
2641 [ # # ]: 0 : } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2642 : : // OUTBOUND_FULL_RELAY
2643 [ # # ]: 0 : } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2644 : : conn_type = ConnectionType::BLOCK_RELAY;
2645 [ # # # # ]: 0 : } else if (GetTryNewOutboundPeer()) {
2646 : : // OUTBOUND_FULL_RELAY
2647 [ # # # # ]: 0 : } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2648 : : // Periodically connect to a peer (using regular outbound selection
2649 : : // methodology from addrman) and stay connected long enough to sync
2650 : : // headers, but not much else.
2651 : : //
2652 : : // Then disconnect the peer, if we haven't learned anything new.
2653 : : //
2654 : : // The idea is to make eclipse attacks very difficult to pull off,
2655 : : // because every few minutes we're finding a new peer to learn headers
2656 : : // from.
2657 : : //
2658 : : // This is similar to the logic for trying extra outbound (full-relay)
2659 : : // peers, except:
2660 : : // - we do this all the time on an exponential timer, rather than just when
2661 : : // our tip is stale
2662 : : // - we potentially disconnect our next-youngest block-relay-only peer, if our
2663 : : // newest block-relay-only peer delivers a block more recently.
2664 : : // See the eviction logic in net_processing.cpp.
2665 : : //
2666 : : // Because we can promote these connections to block-relay-only
2667 : : // connections, they do not get their own ConnectionType enum
2668 : : // (similar to how we deal with extra outbound peers).
2669 : 0 : next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2670 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2671 [ # # ]: 0 : } else if (now > next_feeler) {
2672 : 0 : next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2673 : 0 : conn_type = ConnectionType::FEELER;
2674 : 0 : fFeeler = true;
2675 [ # # ]: 0 : } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2676 [ # # ]: 0 : m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2677 [ # # # # : 0 : now > next_extra_network_peer &&
# # ]
2678 [ # # ]: 0 : MaybePickPreferredNetwork(preferred_net)) {
2679 : : // Full outbound connection management: Attempt to get at least one
2680 : : // outbound peer from each reachable network by making extra connections
2681 : : // and then protecting "only" peers from a network during outbound eviction.
2682 : : // This is not attempted if the user changed -maxconnections to a value
2683 : : // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2684 : : // to prevent interactions with otherwise protected outbound peers.
2685 : 0 : next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2686 : : } else {
2687 : : // skip to next iteration of while loop
2688 : 0 : continue;
2689 : : }
2690 : :
2691 [ # # ]: 0 : addrman.ResolveCollisions();
2692 : :
2693 : 0 : const auto current_time{NodeClock::now()};
2694 : 0 : int nTries = 0;
2695 [ # # # # ]: 0 : while (!interruptNet)
2696 : : {
2697 [ # # # # ]: 0 : if (anchor && !m_anchors.empty()) {
2698 : 0 : const CAddress addr = m_anchors.back();
2699 : 0 : m_anchors.pop_back();
2700 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
# # # # #
# # # #
# ]
2701 [ # # # # : 0 : !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
# # ]
2702 [ # # ]: 0 : outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2703 : 0 : addrConnect = addr;
2704 [ # # # # : 0 : LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2705 : 0 : break;
2706 : 0 : }
2707 : :
2708 : : // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2709 : : // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2710 : : // already-connected network ranges, ...) before trying new addrman addresses.
2711 : 0 : nTries++;
2712 [ # # ]: 0 : if (nTries > 100)
2713 : : break;
2714 : :
2715 [ # # ]: 0 : CAddress addr;
2716 : 0 : NodeSeconds addr_last_try{0s};
2717 : :
2718 [ # # ]: 0 : if (fFeeler) {
2719 : : // First, try to get a tried table collision address. This returns
2720 : : // an empty (invalid) address if there are no collisions to try.
2721 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2722 : :
2723 [ # # # # ]: 0 : if (!addr.IsValid()) {
2724 : : // No tried table collisions. Select a new table address
2725 : : // for our feeler.
2726 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true);
2727 [ # # # # ]: 0 : } else if (AlreadyConnectedToAddress(addr)) {
2728 : : // If test-before-evict logic would have us connect to a
2729 : : // peer that we're already connected to, just mark that
2730 : : // address as Good(). We won't be able to initiate the
2731 : : // connection anyway, so this avoids inadvertently evicting
2732 : : // a currently-connected peer.
2733 [ # # ]: 0 : addrman.Good(addr);
2734 : : // Select a new table address for our feeler instead.
2735 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true);
2736 : : }
2737 : : } else {
2738 : : // Not a feeler
2739 : : // If preferred_net has a value set, pick an extra outbound
2740 : : // peer from that network. The eviction logic in net_processing
2741 : : // ensures that a peer from another network will be evicted.
2742 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(false, preferred_net);
2743 : : }
2744 : :
2745 : : // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2746 [ # # # # : 0 : if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
# # # # ]
2747 : 0 : continue;
2748 : : }
2749 : :
2750 : : // if we selected an invalid or local address, restart
2751 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr)) {
# # # # ]
2752 : : break;
2753 : : }
2754 : :
2755 [ # # # # ]: 0 : if (!g_reachable_nets.Contains(addr)) {
2756 : 0 : continue;
2757 : : }
2758 : :
2759 : : // only consider very recently tried nodes after 30 failed attempts
2760 [ # # # # ]: 0 : if (current_time - addr_last_try < 10min && nTries < 30) {
2761 : 0 : continue;
2762 : : }
2763 : :
2764 : : // for non-feelers, require all the services we'll want,
2765 : : // for feelers, only require they be a full node (only because most
2766 : : // SPV clients don't have a good address DB available)
2767 [ # # # # : 0 : if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
# # ]
2768 : 0 : continue;
2769 [ # # # # ]: 0 : } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2770 : 0 : continue;
2771 : : }
2772 : :
2773 : : // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2774 [ # # # # : 0 : if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
# # # # #
# # # ]
2775 : 0 : continue;
2776 : : }
2777 : :
2778 : : // Do not make automatic outbound connections to addnode peers, to
2779 : : // not use our limited outbound slots for them and to ensure
2780 : : // addnode connections benefit from their intended protections.
2781 [ # # # # ]: 0 : if (AddedNodesContain(addr)) {
2782 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
# # # # #
# # # # #
# # # # #
# # # # #
# # ]
2783 : : preferred_net.has_value() ? "network-specific " : "",
2784 : : ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2785 : : fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2786 : 0 : continue;
2787 : : }
2788 : :
2789 : 0 : addrConnect = addr;
2790 : : break;
2791 : 0 : }
2792 : :
2793 [ # # # # ]: 0 : if (addrConnect.IsValid()) {
2794 [ # # ]: 0 : if (fFeeler) {
2795 : : // Add small amount of random noise before connection to avoid synchronization.
2796 [ # # # # ]: 0 : if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2797 : 0 : return;
2798 : : }
2799 [ # # # # : 0 : LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2800 : : }
2801 : :
2802 [ # # # # : 0 : if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
# # # # #
# # # #
# ]
2803 : :
2804 : : // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2805 : : // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2806 : : // Don't record addrman failure attempts when node is offline. This can be identified since all local
2807 : : // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2808 [ # # ]: 0 : const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2809 : : // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2810 [ # # ]: 0 : const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2811 [ # # ]: 0 : OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2812 : : }
2813 : 0 : }
2814 : 0 : }
2815 : :
2816 : 0 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2817 : : {
2818 : 0 : std::vector<CAddress> ret;
2819 [ # # ]: 0 : LOCK(m_nodes_mutex);
2820 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2821 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) {
2822 [ # # ]: 0 : ret.push_back(pnode->addr);
2823 : : }
2824 : : }
2825 : :
2826 [ # # ]: 0 : return ret;
2827 : 0 : }
2828 : :
2829 : 0 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2830 : : {
2831 : 0 : std::vector<AddedNodeInfo> ret;
2832 : :
2833 [ # # ]: 0 : std::list<AddedNodeParams> lAddresses(0);
2834 : 0 : {
2835 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
2836 [ # # ]: 0 : ret.reserve(m_added_node_params.size());
2837 [ # # ]: 0 : std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2838 : 0 : }
2839 : :
2840 : :
2841 : : // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2842 [ # # ]: 0 : std::map<CService, bool> mapConnected;
2843 : 0 : std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2844 : 0 : {
2845 [ # # ]: 0 : LOCK(m_nodes_mutex);
2846 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2847 [ # # # # ]: 0 : if (pnode->addr.IsValid()) {
2848 [ # # ]: 0 : mapConnected[pnode->addr] = pnode->IsInboundConn();
2849 : : }
2850 [ # # ]: 0 : std::string addrName{pnode->m_addr_name};
2851 [ # # ]: 0 : if (!addrName.empty()) {
2852 [ # # ]: 0 : mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2853 : : }
2854 : 0 : }
2855 : 0 : }
2856 : :
2857 [ # # ]: 0 : for (const auto& addr : lAddresses) {
2858 [ # # # # : 0 : CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
# # # # ]
2859 [ # # # # ]: 0 : AddedNodeInfo addedNode{addr, CService(), false, false};
2860 [ # # # # ]: 0 : if (service.IsValid()) {
2861 : : // strAddNode is an IP:port
2862 [ # # ]: 0 : auto it = mapConnected.find(service);
2863 [ # # ]: 0 : if (it != mapConnected.end()) {
2864 [ # # ]: 0 : if (!include_connected) {
2865 : 0 : continue;
2866 : : }
2867 : 0 : addedNode.resolvedAddress = service;
2868 : 0 : addedNode.fConnected = true;
2869 : 0 : addedNode.fInbound = it->second;
2870 : : }
2871 : : } else {
2872 : : // strAddNode is a name
2873 : 0 : auto it = mapConnectedByName.find(addr.m_added_node);
2874 [ # # ]: 0 : if (it != mapConnectedByName.end()) {
2875 [ # # ]: 0 : if (!include_connected) {
2876 : 0 : continue;
2877 : : }
2878 : 0 : addedNode.resolvedAddress = it->second.second;
2879 : 0 : addedNode.fConnected = true;
2880 : 0 : addedNode.fInbound = it->second.first;
2881 : : }
2882 : : }
2883 [ # # ]: 0 : ret.emplace_back(std::move(addedNode));
2884 : 0 : }
2885 : :
2886 : 0 : return ret;
2887 : 0 : }
2888 : :
2889 : 0 : void CConnman::ThreadOpenAddedConnections()
2890 : : {
2891 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2892 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2893 : 0 : while (true)
2894 : : {
2895 : 0 : CSemaphoreGrant grant(*semAddnode);
2896 [ # # ]: 0 : std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2897 : 0 : bool tried = false;
2898 [ # # ]: 0 : for (const AddedNodeInfo& info : vInfo) {
2899 [ # # ]: 0 : if (!grant) {
2900 : : // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2901 : : // the addednodeinfo state might change.
2902 : : break;
2903 : : }
2904 : 0 : tried = true;
2905 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2906 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2907 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2908 : 0 : grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2909 : 0 : }
2910 : : // See if any reconnections are desired.
2911 [ # # ]: 0 : PerformReconnections();
2912 : : // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2913 [ # # # # : 0 : if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
# # ]
2914 : : return;
2915 : 0 : }
2916 : : }
2917 : :
2918 : : // if successful, this moves the passed grant to the constructed node
2919 : 0 : void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2920 : : {
2921 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2922 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
2923 : :
2924 : : //
2925 : : // Initiate outbound network connection
2926 : : //
2927 [ # # ]: 0 : if (interruptNet) {
2928 : : return;
2929 : : }
2930 [ # # ]: 0 : if (!fNetworkActive) {
2931 : : return;
2932 : : }
2933 [ # # ]: 0 : if (!pszDest) {
2934 [ # # # # : 0 : bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
# # ]
2935 [ # # # # : 0 : if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
# # ]
2936 : 0 : return;
2937 : : }
2938 [ # # # # ]: 0 : } else if (FindNode(std::string(pszDest)))
2939 : : return;
2940 : :
2941 [ # # ]: 0 : CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
2942 : :
2943 [ # # ]: 0 : if (!pnode)
2944 : : return;
2945 : 0 : pnode->grantOutbound = std::move(grant_outbound);
2946 : :
2947 : 0 : m_msgproc->InitializeNode(*pnode, nLocalServices);
2948 : 0 : {
2949 : 0 : LOCK(m_nodes_mutex);
2950 [ # # ]: 0 : m_nodes.push_back(pnode);
2951 : :
2952 : : // update connection count by network
2953 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
2954 : 0 : }
2955 : : }
2956 : :
2957 : : Mutex NetEventsInterface::g_msgproc_mutex;
2958 : :
2959 : 0 : void CConnman::ThreadMessageHandler()
2960 : : {
2961 : 0 : LOCK(NetEventsInterface::g_msgproc_mutex);
2962 : :
2963 [ # # ]: 0 : while (!flagInterruptMsgProc)
2964 : : {
2965 : 0 : bool fMoreWork = false;
2966 : :
2967 : 0 : {
2968 : : // Randomize the order in which we process messages from/to our peers.
2969 : : // This prevents attacks in which an attacker exploits having multiple
2970 : : // consecutive connections in the m_nodes list.
2971 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/true};
2972 : :
2973 [ # # ]: 0 : for (CNode* pnode : snap.Nodes()) {
2974 [ # # ]: 0 : if (pnode->fDisconnect)
2975 : 0 : continue;
2976 : :
2977 : : // Receive messages
2978 [ # # ]: 0 : bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
2979 [ # # # # ]: 0 : fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
2980 [ # # ]: 0 : if (flagInterruptMsgProc)
2981 : : return;
2982 : : // Send messages
2983 [ # # ]: 0 : m_msgproc->SendMessages(pnode);
2984 : :
2985 [ # # ]: 0 : if (flagInterruptMsgProc)
2986 : : return;
2987 : : }
2988 [ # # ]: 0 : }
2989 : :
2990 [ # # ]: 0 : WAIT_LOCK(mutexMsgProc, lock);
2991 [ # # ]: 0 : if (!fMoreWork) {
2992 [ # # # # ]: 0 : condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
2993 : : }
2994 [ # # ]: 0 : fMsgProcWake = false;
2995 : 0 : }
2996 : 0 : }
2997 : :
2998 : 0 : void CConnman::ThreadI2PAcceptIncoming()
2999 : : {
3000 : 0 : static constexpr auto err_wait_begin = 1s;
3001 : 0 : static constexpr auto err_wait_cap = 5min;
3002 : 0 : auto err_wait = err_wait_begin;
3003 : :
3004 : 0 : bool advertising_listen_addr = false;
3005 : 0 : i2p::Connection conn;
3006 : :
3007 : 0 : auto SleepOnFailure = [&]() {
3008 : 0 : interruptNet.sleep_for(err_wait);
3009 [ # # ]: 0 : if (err_wait < err_wait_cap) {
3010 : 0 : err_wait += 1s;
3011 : : }
3012 : 0 : };
3013 : :
3014 [ # # # # ]: 0 : while (!interruptNet) {
3015 : :
3016 [ # # # # ]: 0 : if (!m_i2p_sam_session->Listen(conn)) {
3017 [ # # # # : 0 : if (advertising_listen_addr && conn.me.IsValid()) {
# # ]
3018 [ # # ]: 0 : RemoveLocal(conn.me);
3019 : : advertising_listen_addr = false;
3020 : : }
3021 [ # # ]: 0 : SleepOnFailure();
3022 : 0 : continue;
3023 : : }
3024 : :
3025 [ # # ]: 0 : if (!advertising_listen_addr) {
3026 [ # # ]: 0 : AddLocal(conn.me, LOCAL_MANUAL);
3027 : : advertising_listen_addr = true;
3028 : : }
3029 : :
3030 [ # # # # ]: 0 : if (!m_i2p_sam_session->Accept(conn)) {
3031 [ # # ]: 0 : SleepOnFailure();
3032 : 0 : continue;
3033 : : }
3034 : :
3035 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
3036 : 0 : CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
3037 : :
3038 : 0 : err_wait = err_wait_begin;
3039 : : }
3040 : 0 : }
3041 : :
3042 : 0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3043 : : {
3044 : 0 : int nOne = 1;
3045 : :
3046 : : // Create socket for listening for incoming connections
3047 : 0 : struct sockaddr_storage sockaddr;
3048 : 0 : socklen_t len = sizeof(sockaddr);
3049 [ # # ]: 0 : if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3050 : : {
3051 [ # # # # : 0 : strError = strprintf(Untranslated("Bind address family for %s not supported"), addrBind.ToStringAddrPort());
# # ]
3052 [ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3053 : 0 : return false;
3054 : : }
3055 : :
3056 : 0 : std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3057 [ # # ]: 0 : if (!sock) {
3058 [ # # # # : 0 : strError = strprintf(Untranslated("Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
# # # # ]
3059 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3060 : 0 : return false;
3061 : : }
3062 : :
3063 : : // Allow binding if the port is still in TIME_WAIT state after
3064 : : // the program was closed and restarted.
3065 [ # # # # ]: 0 : if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3066 [ # # # # : 0 : strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
# # # # ]
3067 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3068 : : }
3069 : :
3070 : : // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3071 : : // and enable it by default or not. Try to enable it, if possible.
3072 [ # # ]: 0 : if (addrBind.IsIPv6()) {
3073 : : #ifdef IPV6_V6ONLY
3074 [ # # # # ]: 0 : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3075 [ # # # # : 0 : strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
# # # # ]
3076 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3077 : : }
3078 : : #endif
3079 : : #ifdef WIN32
3080 : : int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3081 : : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3082 : : strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3083 : : LogPrintf("%s\n", strError.original);
3084 : : }
3085 : : #endif
3086 : : }
3087 : :
3088 [ # # # # ]: 0 : if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3089 : 0 : int nErr = WSAGetLastError();
3090 [ # # ]: 0 : if (nErr == WSAEADDRINUSE)
3091 [ # # # # : 0 : strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), PACKAGE_NAME);
# # ]
3092 : : else
3093 [ # # # # : 0 : strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
# # # # ]
3094 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3095 : 0 : return false;
3096 : : }
3097 [ # # # # ]: 0 : LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3098 : :
3099 : : // Listen for incoming connections
3100 [ # # # # ]: 0 : if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3101 : : {
3102 [ # # # # : 0 : strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
# # ]
3103 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3104 : 0 : return false;
3105 : : }
3106 : :
3107 [ # # ]: 0 : vhListenSocket.emplace_back(std::move(sock), permissions);
3108 : : return true;
3109 : 0 : }
3110 : :
3111 : 0 : void Discover()
3112 : : {
3113 [ # # ]: 0 : if (!fDiscover)
3114 : : return;
3115 : :
3116 : : #ifdef WIN32
3117 : : // Get local host IP
3118 : : char pszHostName[256] = "";
3119 : : if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
3120 : : {
3121 : : const std::vector<CNetAddr> addresses{LookupHost(pszHostName, 0, true)};
3122 : : for (const CNetAddr& addr : addresses)
3123 : : {
3124 : : if (AddLocal(addr, LOCAL_IF))
3125 : : LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToStringAddr());
3126 : : }
3127 : : }
3128 : : #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
3129 : : // Get local host ip
3130 : 0 : struct ifaddrs* myaddrs;
3131 [ # # ]: 0 : if (getifaddrs(&myaddrs) == 0)
3132 : : {
3133 [ # # ]: 0 : for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
3134 : : {
3135 [ # # ]: 0 : if (ifa->ifa_addr == nullptr) continue;
3136 [ # # ]: 0 : if ((ifa->ifa_flags & IFF_UP) == 0) continue;
3137 [ # # ]: 0 : if ((ifa->ifa_flags & IFF_LOOPBACK) != 0) continue;
3138 [ # # ]: 0 : if (ifa->ifa_addr->sa_family == AF_INET)
3139 : : {
3140 : 0 : struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
3141 : 0 : CNetAddr addr(s4->sin_addr);
3142 [ # # # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3143 [ # # # # ]: 0 : LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
3144 : 0 : }
3145 [ # # ]: 0 : else if (ifa->ifa_addr->sa_family == AF_INET6)
3146 : : {
3147 : 0 : struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
3148 : 0 : CNetAddr addr(s6->sin6_addr);
3149 [ # # # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3150 [ # # # # ]: 0 : LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
3151 : 0 : }
3152 : : }
3153 : 0 : freeifaddrs(myaddrs);
3154 : : }
3155 : : #endif
3156 : : }
3157 : :
3158 : 1 : void CConnman::SetNetworkActive(bool active)
3159 : : {
3160 : 1 : LogPrintf("%s: %s\n", __func__, active);
3161 : :
3162 [ - + ]: 1 : if (fNetworkActive == active) {
3163 : : return;
3164 : : }
3165 : :
3166 [ # # ]: 0 : fNetworkActive = active;
3167 : :
3168 [ # # ]: 0 : if (m_client_interface) {
3169 : 0 : m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3170 : : }
3171 : : }
3172 : :
3173 : 1 : CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3174 : 1 : const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3175 : 1 : : addrman(addrman_in)
3176 [ + - ]: 1 : , m_netgroupman{netgroupman}
3177 : 1 : , nSeed0(nSeed0In)
3178 : 1 : , nSeed1(nSeed1In)
3179 [ + - + - : 1 : , m_params(params)
+ - + - ]
3180 : : {
3181 [ + - ]: 1 : SetTryNewOutboundPeer(false);
3182 : :
3183 : 1 : Options connOptions;
3184 [ + - ]: 1 : Init(connOptions);
3185 [ + - ]: 1 : SetNetworkActive(network_active);
3186 : 1 : }
3187 : :
3188 : 0 : NodeId CConnman::GetNewNodeId()
3189 : : {
3190 : 0 : return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3191 : : }
3192 : :
3193 : 0 : uint16_t CConnman::GetDefaultPort(Network net) const
3194 : : {
3195 [ # # ]: 0 : return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3196 : : }
3197 : :
3198 : 0 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3199 : : {
3200 : 0 : CNetAddr a;
3201 [ # # # # : 0 : return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
# # # # ]
3202 : 0 : }
3203 : :
3204 : 0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3205 : : {
3206 : 0 : const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3207 : :
3208 [ # # ]: 0 : bilingual_str strError;
3209 [ # # # # ]: 0 : if (!BindListenPort(addr, strError, permissions)) {
3210 [ # # # # ]: 0 : if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3211 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3212 : : }
3213 : 0 : return false;
3214 : : }
3215 : :
3216 [ # # # # : 0 : if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
# # # # #
# ]
3217 [ # # ]: 0 : AddLocal(addr, LOCAL_BIND);
3218 : : }
3219 : :
3220 : : return true;
3221 : 0 : }
3222 : :
3223 : 0 : bool CConnman::InitBinds(const Options& options)
3224 : : {
3225 [ # # ]: 0 : for (const auto& addrBind : options.vBinds) {
3226 [ # # ]: 0 : if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3227 : : return false;
3228 : : }
3229 : : }
3230 [ # # ]: 0 : for (const auto& addrBind : options.vWhiteBinds) {
3231 [ # # ]: 0 : if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3232 : : return false;
3233 : : }
3234 : : }
3235 [ # # ]: 0 : for (const auto& addr_bind : options.onion_binds) {
3236 [ # # ]: 0 : if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3237 : : return false;
3238 : : }
3239 : : }
3240 [ # # ]: 0 : if (options.bind_on_any) {
3241 : : // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3242 : : // may not have IPv6 support and the user did not explicitly ask us to
3243 : : // bind on that.
3244 : 0 : const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3245 [ # # ]: 0 : Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3246 : :
3247 : 0 : struct in_addr inaddr_any;
3248 : 0 : inaddr_any.s_addr = htonl(INADDR_ANY);
3249 [ # # # # ]: 0 : const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3250 [ # # # # ]: 0 : if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3251 : 0 : return false;
3252 : : }
3253 : 0 : }
3254 : : return true;
3255 : : }
3256 : :
3257 : 0 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3258 : : {
3259 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3260 : 0 : Init(connOptions);
3261 : :
3262 [ # # # # ]: 0 : if (fListen && !InitBinds(connOptions)) {
3263 [ # # ]: 0 : if (m_client_interface) {
3264 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3265 [ # # ]: 0 : _("Failed to listen on any port. Use -listen=0 if you want this."),
3266 : : "", CClientUIInterface::MSG_ERROR);
3267 : : }
3268 : 0 : return false;
3269 : : }
3270 : :
3271 : 0 : Proxy i2p_sam;
3272 [ # # # # : 0 : if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
# # ]
3273 [ # # # # ]: 0 : m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3274 [ # # ]: 0 : i2p_sam, &interruptNet);
3275 : : }
3276 : :
3277 : : // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3278 [ # # ]: 0 : std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3279 [ # # ]: 0 : if (!seed_nodes.empty()) {
3280 : 0 : std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3281 : : }
3282 : :
3283 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3284 : : // Load addresses from anchors.dat
3285 [ # # # # : 0 : m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
# # ]
3286 [ # # ]: 0 : if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3287 [ # # ]: 0 : m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3288 : : }
3289 [ # # ]: 0 : LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3290 : : }
3291 : :
3292 [ # # ]: 0 : if (m_client_interface) {
3293 [ # # # # ]: 0 : m_client_interface->InitMessage(_("Starting network threads…").translated);
3294 : : }
3295 : :
3296 : 0 : fAddressesInitialized = true;
3297 : :
3298 [ # # ]: 0 : if (semOutbound == nullptr) {
3299 : : // initialize semaphore
3300 [ # # # # ]: 0 : semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3301 : : }
3302 [ # # ]: 0 : if (semAddnode == nullptr) {
3303 : : // initialize semaphore
3304 [ # # ]: 0 : semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3305 : : }
3306 : :
3307 : : //
3308 : : // Start threads
3309 : : //
3310 [ # # ]: 0 : assert(m_msgproc);
3311 [ # # ]: 0 : interruptNet.reset();
3312 [ # # ]: 0 : flagInterruptMsgProc = false;
3313 : :
3314 : 0 : {
3315 [ # # ]: 0 : LOCK(mutexMsgProc);
3316 [ # # ]: 0 : fMsgProcWake = false;
3317 : 0 : }
3318 : :
3319 : : // Send and receive from sockets, accept connections
3320 [ # # ]: 0 : threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3321 : :
3322 [ # # # # : 0 : if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
# # ]
3323 [ # # ]: 0 : LogPrintf("DNS seeding disabled\n");
3324 : : else
3325 [ # # ]: 0 : threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3326 : :
3327 : : // Initiate manual connections
3328 [ # # ]: 0 : threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3329 : :
3330 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3331 [ # # ]: 0 : if (m_client_interface) {
3332 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3333 [ # # ]: 0 : _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3334 : : "", CClientUIInterface::MSG_ERROR);
3335 : : }
3336 : 0 : return false;
3337 : : }
3338 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3339 : 0 : threadOpenConnections = std::thread(
3340 [ # # ]: 0 : &util::TraceThread, "opencon",
3341 [ # # # # : 0 : [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
# # ]
3342 : : }
3343 : :
3344 : : // Process messages
3345 [ # # ]: 0 : threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3346 : :
3347 [ # # ]: 0 : if (m_i2p_sam_session) {
3348 : 0 : threadI2PAcceptIncoming =
3349 [ # # ]: 0 : std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3350 : : }
3351 : :
3352 : : // Dump network addresses
3353 [ # # ]: 0 : scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3354 : :
3355 : : // Run the ASMap Health check once and then schedule it to run every 24h.
3356 [ # # # # ]: 0 : if (m_netgroupman.UsingASMap()) {
3357 [ # # ]: 0 : ASMapHealthCheck();
3358 [ # # ]: 0 : scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3359 : : }
3360 : :
3361 : : return true;
3362 : 0 : }
3363 : :
3364 : : class CNetCleanup
3365 : : {
3366 : : public:
3367 : : CNetCleanup() = default;
3368 : :
3369 : 2 : ~CNetCleanup()
3370 : : {
3371 : : #ifdef WIN32
3372 : : // Shutdown Windows Sockets
3373 : : WSACleanup();
3374 : : #endif
3375 : 2 : }
3376 : : };
3377 : : static CNetCleanup instance_of_cnetcleanup;
3378 : :
3379 : 1 : void CConnman::Interrupt()
3380 : : {
3381 : 1 : {
3382 : 1 : LOCK(mutexMsgProc);
3383 [ + - ]: 1 : flagInterruptMsgProc = true;
3384 : 1 : }
3385 : 1 : condMsgProc.notify_all();
3386 : :
3387 : 1 : interruptNet();
3388 : 1 : g_socks5_interrupt();
3389 : :
3390 [ - + ]: 1 : if (semOutbound) {
3391 [ # # ]: 0 : for (int i=0; i<m_max_automatic_outbound; i++) {
3392 : 0 : semOutbound->post();
3393 : : }
3394 : : }
3395 : :
3396 [ - + ]: 1 : if (semAddnode) {
3397 [ # # ]: 0 : for (int i=0; i<m_max_addnode; i++) {
3398 : 0 : semAddnode->post();
3399 : : }
3400 : : }
3401 : 1 : }
3402 : :
3403 : 1 : void CConnman::StopThreads()
3404 : : {
3405 [ - + ]: 1 : if (threadI2PAcceptIncoming.joinable()) {
3406 : 0 : threadI2PAcceptIncoming.join();
3407 : : }
3408 [ - + ]: 1 : if (threadMessageHandler.joinable())
3409 : 0 : threadMessageHandler.join();
3410 [ - + ]: 1 : if (threadOpenConnections.joinable())
3411 : 0 : threadOpenConnections.join();
3412 [ - + ]: 1 : if (threadOpenAddedConnections.joinable())
3413 : 0 : threadOpenAddedConnections.join();
3414 [ - + ]: 1 : if (threadDNSAddressSeed.joinable())
3415 : 0 : threadDNSAddressSeed.join();
3416 [ - + ]: 1 : if (threadSocketHandler.joinable())
3417 : 0 : threadSocketHandler.join();
3418 : 1 : }
3419 : :
3420 : 1 : void CConnman::StopNodes()
3421 : : {
3422 [ - + ]: 1 : if (fAddressesInitialized) {
3423 : 0 : DumpAddresses();
3424 : 0 : fAddressesInitialized = false;
3425 : :
3426 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3427 : : // Anchor connections are only dumped during clean shutdown.
3428 : 0 : std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3429 [ # # ]: 0 : if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3430 [ # # ]: 0 : anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3431 : : }
3432 [ # # # # : 0 : DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
# # ]
3433 : 0 : }
3434 : : }
3435 : :
3436 : : // Delete peer connections.
3437 : 1 : std::vector<CNode*> nodes;
3438 [ + - + - ]: 2 : WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3439 [ - + ]: 1 : for (CNode* pnode : nodes) {
3440 [ # # ]: 0 : pnode->CloseSocketDisconnect();
3441 [ # # ]: 0 : DeleteNode(pnode);
3442 : : }
3443 : :
3444 [ - + ]: 1 : for (CNode* pnode : m_nodes_disconnected) {
3445 [ # # ]: 0 : DeleteNode(pnode);
3446 : : }
3447 : 1 : m_nodes_disconnected.clear();
3448 : 1 : vhListenSocket.clear();
3449 [ - + ]: 1 : semOutbound.reset();
3450 [ - + ]: 1 : semAddnode.reset();
3451 : 1 : }
3452 : :
3453 : 0 : void CConnman::DeleteNode(CNode* pnode)
3454 : : {
3455 [ # # ]: 0 : assert(pnode);
3456 : 0 : m_msgproc->FinalizeNode(*pnode);
3457 : 0 : delete pnode;
3458 : 0 : }
3459 : :
3460 : 1 : CConnman::~CConnman()
3461 : : {
3462 : 1 : Interrupt();
3463 : 1 : Stop();
3464 : 1 : }
3465 : :
3466 : 0 : std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3467 : : {
3468 : 0 : std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3469 [ # # ]: 0 : if (m_banman) {
3470 [ # # ]: 0 : addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3471 [ # # # # ]: 0 : [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3472 [ # # ]: 0 : addresses.end());
3473 : : }
3474 : 0 : return addresses;
3475 : 0 : }
3476 : :
3477 : 0 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3478 : : {
3479 : 0 : auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3480 [ # # ]: 0 : uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3481 [ # # # # : 0 : .Write(requestor.ConnectedThroughNetwork())
# # ]
3482 [ # # # # ]: 0 : .Write(local_socket_bytes)
3483 : : // For outbound connections, the port of the bound address is randomly
3484 : : // assigned by the OS and would therefore not be useful for seeding.
3485 [ # # # # : 0 : .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
# # ]
3486 [ # # ]: 0 : .Finalize();
3487 : 0 : const auto current_time = GetTime<std::chrono::microseconds>();
3488 [ # # ]: 0 : auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3489 [ # # ]: 0 : CachedAddrResponse& cache_entry = r.first->second;
3490 [ # # ]: 0 : if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3491 [ # # ]: 0 : cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3492 : : // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3493 : : // and the usefulness of ADDR responses to honest users.
3494 : : //
3495 : : // Longer cache lifetime makes it more difficult for an attacker to scrape
3496 : : // enough AddrMan data to maliciously infer something useful.
3497 : : // By the time an attacker scraped enough AddrMan records, most of
3498 : : // the records should be old enough to not leak topology info by
3499 : : // e.g. analyzing real-time changes in timestamps.
3500 : : //
3501 : : // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3502 : : // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3503 : : // most of it could be scraped (considering that timestamps are updated via
3504 : : // ADDR self-announcements and when nodes communicate).
3505 : : // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3506 : : // (because even several timestamps of the same handful of nodes may leak privacy).
3507 : : //
3508 : : // On the other hand, longer cache lifetime makes ADDR responses
3509 : : // outdated and less useful for an honest requestor, e.g. if most nodes
3510 : : // in the ADDR response are no longer active.
3511 : : //
3512 : : // However, the churn in the network is known to be rather low. Since we consider
3513 : : // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3514 : : // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3515 : : // in terms of the freshness of the response.
3516 : 0 : cache_entry.m_cache_entry_expiration = current_time +
3517 : 0 : 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3518 : : }
3519 [ # # ]: 0 : return cache_entry.m_addrs_response_cache;
3520 : 0 : }
3521 : :
3522 : 0 : bool CConnman::AddNode(const AddedNodeParams& add)
3523 : : {
3524 [ # # # # ]: 0 : const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3525 [ # # ]: 0 : const bool resolved_is_valid{resolved.IsValid()};
3526 : :
3527 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
3528 [ # # ]: 0 : for (const auto& it : m_added_node_params) {
3529 [ # # # # : 0 : if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
# # # # #
# # # # #
# # # # #
# # # ]
3530 : : }
3531 : :
3532 [ # # ]: 0 : m_added_node_params.push_back(add);
3533 : : return true;
3534 : 0 : }
3535 : :
3536 : 0 : bool CConnman::RemoveAddedNode(const std::string& strNode)
3537 : : {
3538 : 0 : LOCK(m_added_nodes_mutex);
3539 [ # # ]: 0 : for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3540 [ # # ]: 0 : if (strNode == it->m_added_node) {
3541 : 0 : m_added_node_params.erase(it);
3542 : 0 : return true;
3543 : : }
3544 : : }
3545 : : return false;
3546 : 0 : }
3547 : :
3548 : 0 : bool CConnman::AddedNodesContain(const CAddress& addr) const
3549 : : {
3550 : 0 : AssertLockNotHeld(m_added_nodes_mutex);
3551 : 0 : const std::string addr_str{addr.ToStringAddr()};
3552 [ # # ]: 0 : const std::string addr_port_str{addr.ToStringAddrPort()};
3553 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
3554 [ # # ]: 0 : return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3555 [ # # # # ]: 0 : && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3556 [ # # # # : 0 : [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
# # ]
3557 : 0 : }
3558 : :
3559 : 0 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3560 : : {
3561 : 0 : LOCK(m_nodes_mutex);
3562 [ # # ]: 0 : if (flags == ConnectionDirection::Both) // Shortcut if we want total
3563 : 0 : return m_nodes.size();
3564 : :
3565 : 0 : int nNum = 0;
3566 [ # # ]: 0 : for (const auto& pnode : m_nodes) {
3567 [ # # # # ]: 0 : if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3568 : 0 : nNum++;
3569 : : }
3570 : : }
3571 : :
3572 : 0 : return nNum;
3573 : 0 : }
3574 : :
3575 : :
3576 : 0 : std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3577 : : {
3578 : 0 : LOCK(g_maplocalhost_mutex);
3579 [ # # # # ]: 0 : return mapLocalHost;
3580 : 0 : }
3581 : :
3582 : 0 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3583 : : {
3584 : 0 : return m_netgroupman.GetMappedAS(addr);
3585 : : }
3586 : :
3587 : 0 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3588 : : {
3589 : 0 : vstats.clear();
3590 : 0 : LOCK(m_nodes_mutex);
3591 [ # # ]: 0 : vstats.reserve(m_nodes.size());
3592 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
3593 [ # # ]: 0 : vstats.emplace_back();
3594 [ # # ]: 0 : pnode->CopyStats(vstats.back());
3595 [ # # ]: 0 : vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3596 : : }
3597 : 0 : }
3598 : :
3599 : 0 : bool CConnman::DisconnectNode(const std::string& strNode)
3600 : : {
3601 : 0 : LOCK(m_nodes_mutex);
3602 [ # # # # ]: 0 : if (CNode* pnode = FindNode(strNode)) {
3603 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
# # # # #
# # # ]
3604 : 0 : pnode->fDisconnect = true;
3605 : 0 : return true;
3606 : : }
3607 : : return false;
3608 : 0 : }
3609 : :
3610 : 0 : bool CConnman::DisconnectNode(const CSubNet& subnet)
3611 : : {
3612 : 0 : bool disconnected = false;
3613 : 0 : LOCK(m_nodes_mutex);
3614 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
3615 [ # # # # ]: 0 : if (subnet.Match(pnode->addr)) {
3616 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
# # # # #
# # # # #
# # # # ]
3617 : 0 : pnode->fDisconnect = true;
3618 : 0 : disconnected = true;
3619 : : }
3620 : : }
3621 [ # # ]: 0 : return disconnected;
3622 : 0 : }
3623 : :
3624 : 0 : bool CConnman::DisconnectNode(const CNetAddr& addr)
3625 : : {
3626 [ # # ]: 0 : return DisconnectNode(CSubNet(addr));
3627 : : }
3628 : :
3629 : 0 : bool CConnman::DisconnectNode(NodeId id)
3630 : : {
3631 : 0 : LOCK(m_nodes_mutex);
3632 [ # # ]: 0 : for(CNode* pnode : m_nodes) {
3633 [ # # ]: 0 : if (id == pnode->GetId()) {
3634 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
# # ]
3635 : 0 : pnode->fDisconnect = true;
3636 : 0 : return true;
3637 : : }
3638 : : }
3639 : : return false;
3640 : 0 : }
3641 : :
3642 : 0 : void CConnman::RecordBytesRecv(uint64_t bytes)
3643 : : {
3644 : 0 : nTotalBytesRecv += bytes;
3645 : 0 : }
3646 : :
3647 : 0 : void CConnman::RecordBytesSent(uint64_t bytes)
3648 : : {
3649 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3650 : 0 : LOCK(m_total_bytes_sent_mutex);
3651 : :
3652 : 0 : nTotalBytesSent += bytes;
3653 : :
3654 : 0 : const auto now = GetTime<std::chrono::seconds>();
3655 [ # # ]: 0 : if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3656 : : {
3657 : : // timeframe expired, reset cycle
3658 : 0 : nMaxOutboundCycleStartTime = now;
3659 : 0 : nMaxOutboundTotalBytesSentInCycle = 0;
3660 : : }
3661 : :
3662 [ # # ]: 0 : nMaxOutboundTotalBytesSentInCycle += bytes;
3663 : 0 : }
3664 : :
3665 : 0 : uint64_t CConnman::GetMaxOutboundTarget() const
3666 : : {
3667 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3668 : 0 : LOCK(m_total_bytes_sent_mutex);
3669 [ # # ]: 0 : return nMaxOutboundLimit;
3670 : 0 : }
3671 : :
3672 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3673 : : {
3674 : 0 : return MAX_UPLOAD_TIMEFRAME;
3675 : : }
3676 : :
3677 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3678 : : {
3679 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3680 : 0 : LOCK(m_total_bytes_sent_mutex);
3681 [ # # ]: 0 : return GetMaxOutboundTimeLeftInCycle_();
3682 : 0 : }
3683 : :
3684 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3685 : : {
3686 : 0 : AssertLockHeld(m_total_bytes_sent_mutex);
3687 : :
3688 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3689 : 0 : return 0s;
3690 : :
3691 [ # # ]: 0 : if (nMaxOutboundCycleStartTime.count() == 0)
3692 : 0 : return MAX_UPLOAD_TIMEFRAME;
3693 : :
3694 : 0 : const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3695 : 0 : const auto now = GetTime<std::chrono::seconds>();
3696 [ # # ]: 0 : return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3697 : : }
3698 : :
3699 : 0 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3700 : : {
3701 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3702 : 0 : LOCK(m_total_bytes_sent_mutex);
3703 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3704 : : return false;
3705 : :
3706 [ # # ]: 0 : if (historicalBlockServingLimit)
3707 : : {
3708 : : // keep a large enough buffer to at least relay each block once
3709 [ # # ]: 0 : const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3710 : 0 : const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3711 [ # # # # ]: 0 : if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3712 : 0 : return true;
3713 : : }
3714 [ # # ]: 0 : else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3715 : 0 : return true;
3716 : :
3717 : : return false;
3718 : 0 : }
3719 : :
3720 : 0 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
3721 : : {
3722 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3723 : 0 : LOCK(m_total_bytes_sent_mutex);
3724 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3725 : : return 0;
3726 : :
3727 [ # # ]: 0 : return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3728 : 0 : }
3729 : :
3730 : 0 : uint64_t CConnman::GetTotalBytesRecv() const
3731 : : {
3732 : 0 : return nTotalBytesRecv;
3733 : : }
3734 : :
3735 : 0 : uint64_t CConnman::GetTotalBytesSent() const
3736 : : {
3737 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3738 : 0 : LOCK(m_total_bytes_sent_mutex);
3739 [ # # ]: 0 : return nTotalBytesSent;
3740 : 0 : }
3741 : :
3742 : 2 : ServiceFlags CConnman::GetLocalServices() const
3743 : : {
3744 : 2 : return nLocalServices;
3745 : : }
3746 : :
3747 : 0 : static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3748 : : {
3749 [ # # ]: 0 : if (use_v2transport) {
3750 [ # # ]: 0 : return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3751 : : } else {
3752 [ # # ]: 0 : return std::make_unique<V1Transport>(id);
3753 : : }
3754 : : }
3755 : :
3756 : 0 : CNode::CNode(NodeId idIn,
3757 : : std::shared_ptr<Sock> sock,
3758 : : const CAddress& addrIn,
3759 : : uint64_t nKeyedNetGroupIn,
3760 : : uint64_t nLocalHostNonceIn,
3761 : : const CAddress& addrBindIn,
3762 : : const std::string& addrNameIn,
3763 : : ConnectionType conn_type_in,
3764 : : bool inbound_onion,
3765 : 0 : CNodeOptions&& node_opts)
3766 : 0 : : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3767 : 0 : m_permission_flags{node_opts.permission_flags},
3768 [ # # ]: 0 : m_sock{sock},
3769 : 0 : m_connected{GetTime<std::chrono::seconds>()},
3770 : 0 : addr{addrIn},
3771 : 0 : addrBind{addrBindIn},
3772 [ # # # # : 0 : m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
# # ]
3773 [ # # ]: 0 : m_dest(addrNameIn),
3774 : 0 : m_inbound_onion{inbound_onion},
3775 [ # # ]: 0 : m_prefer_evict{node_opts.prefer_evict},
3776 : 0 : nKeyedNetGroup{nKeyedNetGroupIn},
3777 [ # # ]: 0 : m_conn_type{conn_type_in},
3778 : 0 : id{idIn},
3779 : 0 : nLocalHostNonce{nLocalHostNonceIn},
3780 [ # # ]: 0 : m_recv_flood_size{node_opts.recv_flood_size},
3781 [ # # # # : 0 : m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
# # ]
3782 : : {
3783 [ # # # # ]: 0 : if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3784 : :
3785 [ # # ]: 0 : for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3786 [ # # ]: 0 : mapRecvBytesPerMsgType[msg] = 0;
3787 : : }
3788 [ # # ]: 0 : mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3789 : :
3790 [ # # ]: 0 : if (fLogIPs) {
3791 [ # # # # : 0 : LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
# # ]
3792 : : } else {
3793 [ # # # # : 0 : LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
# # ]
3794 : : }
3795 [ # # ]: 0 : }
3796 : :
3797 : 0 : void CNode::MarkReceivedMsgsForProcessing()
3798 : : {
3799 : 0 : AssertLockNotHeld(m_msg_process_queue_mutex);
3800 : :
3801 : 0 : size_t nSizeAdded = 0;
3802 [ # # ]: 0 : for (const auto& msg : vRecvMsg) {
3803 : : // vRecvMsg contains only completed CNetMessage
3804 : : // the single possible partially deserialized message are held by TransportDeserializer
3805 : 0 : nSizeAdded += msg.m_raw_message_size;
3806 : : }
3807 : :
3808 : 0 : LOCK(m_msg_process_queue_mutex);
3809 : 0 : m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3810 : 0 : m_msg_process_queue_size += nSizeAdded;
3811 [ # # ]: 0 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3812 : 0 : }
3813 : :
3814 : 0 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3815 : : {
3816 : 0 : LOCK(m_msg_process_queue_mutex);
3817 [ # # ]: 0 : if (m_msg_process_queue.empty()) return std::nullopt;
3818 : :
3819 : 0 : std::list<CNetMessage> msgs;
3820 : : // Just take one message
3821 : 0 : msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3822 : 0 : m_msg_process_queue_size -= msgs.front().m_raw_message_size;
3823 : 0 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3824 : :
3825 : 0 : return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3826 : 0 : }
3827 : :
3828 : 0 : bool CConnman::NodeFullyConnected(const CNode* pnode)
3829 : : {
3830 [ # # # # : 0 : return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
# # ]
3831 : : }
3832 : :
3833 : 0 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3834 : : {
3835 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3836 : 0 : size_t nMessageSize = msg.data.size();
3837 [ # # ]: 0 : LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3838 [ # # # # ]: 0 : if (gArgs.GetBoolArg("-capturemessages", false)) {
3839 : 0 : CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3840 : : }
3841 : :
3842 : : TRACE6(net, outbound_message,
3843 : : pnode->GetId(),
3844 : : pnode->m_addr_name.c_str(),
3845 : : pnode->ConnectionTypeAsString().c_str(),
3846 : : msg.m_type.c_str(),
3847 : : msg.data.size(),
3848 : : msg.data.data()
3849 : 0 : );
3850 : :
3851 : 0 : size_t nBytesSent = 0;
3852 : 0 : {
3853 : 0 : LOCK(pnode->cs_vSend);
3854 : : // Check if the transport still has unsent bytes, and indicate to it that we're about to
3855 : : // give it a message to send.
3856 [ # # ]: 0 : const auto& [to_send, more, _msg_type] =
3857 [ # # ]: 0 : pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3858 [ # # # # ]: 0 : const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3859 : :
3860 : : // Update memory usage of send buffer.
3861 : 0 : pnode->m_send_memusage += msg.GetMemoryUsage();
3862 [ # # ]: 0 : if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3863 : : // Move message to vSendMsg queue.
3864 [ # # ]: 0 : pnode->vSendMsg.push_back(std::move(msg));
3865 : :
3866 : : // If there was nothing to send before, and there is now (predicted by the "more" value
3867 : : // returned by the GetBytesToSend call above), attempt "optimistic write":
3868 : : // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3869 : : // doing a send, try sending from the calling thread if the queue was empty before.
3870 : : // With a V1Transport, more will always be true here, because adding a message always
3871 : : // results in sendable bytes there, but with V2Transport this is not the case (it may
3872 : : // still be in the handshake).
3873 [ # # # # ]: 0 : if (queue_was_empty && more) {
3874 [ # # ]: 0 : std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3875 : : }
3876 : 0 : }
3877 [ # # ]: 0 : if (nBytesSent) RecordBytesSent(nBytesSent);
3878 : 0 : }
3879 : :
3880 : 0 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3881 : : {
3882 : 0 : CNode* found = nullptr;
3883 : 0 : LOCK(m_nodes_mutex);
3884 [ # # ]: 0 : for (auto&& pnode : m_nodes) {
3885 [ # # ]: 0 : if(pnode->GetId() == id) {
3886 : : found = pnode;
3887 : : break;
3888 : : }
3889 : : }
3890 [ # # # # : 0 : return found != nullptr && NodeFullyConnected(found) && func(found);
# # # # #
# # # ]
3891 : 0 : }
3892 : :
3893 : 0 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3894 : : {
3895 : 0 : return CSipHasher(nSeed0, nSeed1).Write(id);
3896 : : }
3897 : :
3898 : 0 : uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
3899 : : {
3900 : 0 : std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3901 : :
3902 [ # # # # : 0 : return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
# # ]
3903 : 0 : }
3904 : :
3905 : 0 : void CConnman::PerformReconnections()
3906 : : {
3907 : 0 : AssertLockNotHeld(m_reconnections_mutex);
3908 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3909 : 0 : while (true) {
3910 : : // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3911 [ # # ]: 0 : decltype(m_reconnections) todo;
3912 : 0 : {
3913 [ # # ]: 0 : LOCK(m_reconnections_mutex);
3914 [ # # ]: 0 : if (m_reconnections.empty()) break;
3915 [ # # ]: 0 : todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3916 : 0 : }
3917 : :
3918 [ # # ]: 0 : auto& item = *todo.begin();
3919 : 0 : OpenNetworkConnection(item.addr_connect,
3920 : : // We only reconnect if the first attempt to connect succeeded at
3921 : : // connection time, but then failed after the CNode object was
3922 : : // created. Since we already know connecting is possible, do not
3923 : : // count failure to reconnect.
3924 : : /*fCountFailure=*/false,
3925 [ # # ]: 0 : std::move(item.grant),
3926 : 0 : item.destination.empty() ? nullptr : item.destination.c_str(),
3927 : : item.conn_type,
3928 [ # # ]: 0 : item.use_v2transport);
3929 : 0 : }
3930 : 0 : }
3931 : :
3932 : 0 : void CConnman::ASMapHealthCheck()
3933 : : {
3934 : 0 : const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3935 [ # # ]: 0 : const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3936 : 0 : std::vector<CNetAddr> clearnet_addrs;
3937 [ # # ]: 0 : clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3938 [ # # ]: 0 : std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3939 [ # # ]: 0 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3940 [ # # ]: 0 : std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3941 [ # # ]: 0 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3942 [ # # ]: 0 : m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3943 : 0 : }
3944 : :
3945 : : // Dump binary message to file, with timestamp.
3946 : 0 : static void CaptureMessageToFile(const CAddress& addr,
3947 : : const std::string& msg_type,
3948 : : Span<const unsigned char> data,
3949 : : bool is_incoming)
3950 : : {
3951 : : // Note: This function captures the message at the time of processing,
3952 : : // not at socket receive/send time.
3953 : : // This ensures that the messages are always in order from an application
3954 : : // layer (processing) perspective.
3955 : 0 : auto now = GetTime<std::chrono::microseconds>();
3956 : :
3957 : : // Windows folder names cannot include a colon
3958 : 0 : std::string clean_addr = addr.ToStringAddrPort();
3959 : 0 : std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3960 : :
3961 [ # # # # : 0 : fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
# # ]
3962 [ # # ]: 0 : fs::create_directories(base_path);
3963 : :
3964 [ # # # # ]: 0 : fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
3965 [ # # ]: 0 : AutoFile f{fsbridge::fopen(path, "ab")};
3966 : :
3967 [ # # ]: 0 : ser_writedata64(f, now.count());
3968 [ # # ]: 0 : f << Span{msg_type};
3969 [ # # ]: 0 : for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
3970 [ # # ]: 0 : f << uint8_t{'\0'};
3971 : : }
3972 [ # # ]: 0 : uint32_t size = data.size();
3973 [ # # ]: 0 : ser_writedata32(f, size);
3974 [ # # ]: 0 : f << data;
3975 : 0 : }
3976 : :
3977 : : std::function<void(const CAddress& addr,
3978 : : const std::string& msg_type,
3979 : : Span<const unsigned char> data,
3980 : : bool is_incoming)>
3981 : : CaptureMessage = CaptureMessageToFile;
|