Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-2022 The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <bitcoin-build-config.h> // IWYU pragma: keep
7 : :
8 : : #include <net.h>
9 : :
10 : : #include <addrdb.h>
11 : : #include <addrman.h>
12 : : #include <banman.h>
13 : : #include <clientversion.h>
14 : : #include <common/args.h>
15 : : #include <common/netif.h>
16 : : #include <compat/compat.h>
17 : : #include <consensus/consensus.h>
18 : : #include <crypto/sha256.h>
19 : : #include <i2p.h>
20 : : #include <key.h>
21 : : #include <logging.h>
22 : : #include <memusage.h>
23 : : #include <net_permissions.h>
24 : : #include <netaddress.h>
25 : : #include <netbase.h>
26 : : #include <node/eviction.h>
27 : : #include <node/interface_ui.h>
28 : : #include <protocol.h>
29 : : #include <random.h>
30 : : #include <scheduler.h>
31 : : #include <util/fs.h>
32 : : #include <util/sock.h>
33 : : #include <util/strencodings.h>
34 : : #include <util/thread.h>
35 : : #include <util/threadinterrupt.h>
36 : : #include <util/trace.h>
37 : : #include <util/translation.h>
38 : : #include <util/vector.h>
39 : :
40 : : #ifdef WIN32
41 : : #include <string.h>
42 : : #endif
43 : :
44 : : #if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45 : : #include <ifaddrs.h>
46 : : #endif
47 : :
48 : : #include <algorithm>
49 : : #include <array>
50 : : #include <cmath>
51 : : #include <cstdint>
52 : : #include <functional>
53 : : #include <optional>
54 : : #include <unordered_map>
55 : :
56 : : TRACEPOINT_SEMAPHORE(net, closed_connection);
57 : : TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
58 : : TRACEPOINT_SEMAPHORE(net, inbound_connection);
59 : : TRACEPOINT_SEMAPHORE(net, outbound_connection);
60 : : TRACEPOINT_SEMAPHORE(net, outbound_message);
61 : :
62 : : /** Maximum number of block-relay-only anchor connections */
63 : : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
64 : : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
65 : : /** Anchor IP address database file name */
66 : : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
67 : :
68 : : // How often to dump addresses to peers.dat
69 : : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
70 : :
71 : : /** Number of DNS seeds to query when the number of connections is low. */
72 : : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
73 : :
74 : : /** Minimum number of outbound connections under which we will keep fetching our address seeds. */
75 : : static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
76 : :
77 : : /** How long to delay before querying DNS seeds
78 : : *
79 : : * If we have more than THRESHOLD entries in addrman, then it's likely
80 : : * that we got those addresses from having previously connected to the P2P
81 : : * network, and that we'll be able to successfully reconnect to the P2P
82 : : * network via contacting one of them. So if that's the case, spend a
83 : : * little longer trying to connect to known peers before querying the
84 : : * DNS seeds.
85 : : */
86 : : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
87 : : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
88 : : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
89 : :
90 : : /** The default timeframe for -maxuploadtarget. 1 day. */
91 : : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
92 : :
93 : : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
94 : : static constexpr auto FEELER_SLEEP_WINDOW{1s};
95 : :
96 : : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
97 : : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
98 : :
99 : : /** Used to pass flags to the Bind() function */
100 : : enum BindFlags {
101 : : BF_NONE = 0,
102 : : BF_REPORT_ERROR = (1U << 0),
103 : : /**
104 : : * Do not call AddLocal() for our special addresses, e.g., for incoming
105 : : * Tor connections, to prevent gossiping them over the network.
106 : : */
107 : : BF_DONT_ADVERTISE = (1U << 1),
108 : : };
109 : :
110 : : // The set of sockets cannot be modified while waiting
111 : : // The sleep time needs to be small to avoid new sockets stalling
112 : : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
113 : :
114 : : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
115 : :
116 : : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
117 : : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
118 : : static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
119 : : //
120 : : // Global state variables
121 : : //
122 : : bool fDiscover = true;
123 : : bool fListen = true;
124 : : GlobalMutex g_maplocalhost_mutex;
125 : : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
126 : : std::string strSubVersion;
127 : :
128 : 942976 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
129 : : {
130 [ + + ]: 942976 : return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
131 : : }
132 : :
133 : 287400 : size_t CNetMessage::GetMemoryUsage() const noexcept
134 : : {
135 : 287400 : return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
136 : : }
137 : :
138 : 0 : void CConnman::AddAddrFetch(const std::string& strDest)
139 : : {
140 : 0 : LOCK(m_addr_fetches_mutex);
141 [ # # ]: 0 : m_addr_fetches.push_back(strDest);
142 : 0 : }
143 : :
144 : 125304 : uint16_t GetListenPort()
145 : : {
146 : : // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
147 [ + - - + ]: 125304 : for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
148 : 0 : constexpr uint16_t dummy_port = 0;
149 : :
150 [ # # # # ]: 0 : const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
151 [ # # # # : 0 : if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
# # # # ]
152 : 125304 : }
153 : :
154 : : // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
155 : : // (-whitebind= is required to have ":port").
156 [ + - - + ]: 125304 : for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
157 [ # # ]: 0 : NetWhitebindPermissions whitebind;
158 [ # # ]: 0 : bilingual_str error;
159 [ # # # # ]: 0 : if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
160 [ # # ]: 0 : if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
161 [ # # ]: 0 : return whitebind.m_service.GetPort();
162 : : }
163 : : }
164 : 125304 : }
165 : :
166 : : // Otherwise, if -port= is provided, use that. Otherwise use the default port.
167 [ + - ]: 125304 : return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
168 : : }
169 : :
170 : : // Determine the "best" local address for a particular peer.
171 : 125304 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
172 : : {
173 [ - + ]: 125304 : if (!fListen) return std::nullopt;
174 : :
175 : 125304 : std::optional<CService> addr;
176 : 125304 : int nBestScore = -1;
177 : 125304 : int nBestReachability = -1;
178 : 125304 : {
179 [ + - ]: 125304 : LOCK(g_maplocalhost_mutex);
180 [ + - + + ]: 21421261 : for (const auto& [local_addr, local_service_info] : mapLocalHost) {
181 : : // For privacy reasons, don't advertise our privacy-network address
182 : : // to other networks and don't advertise our other-network address
183 : : // to privacy networks.
184 [ + - + - ]: 21295957 : if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
185 [ + + + - : 33944039 : && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
+ + ]
186 : 7098419 : continue;
187 : : }
188 : 14197538 : const int nScore{local_service_info.nScore};
189 [ + - ]: 14197538 : const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
190 [ + + + + ]: 14197538 : if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
191 [ + - ]: 452606 : addr.emplace(CService{local_addr, local_service_info.nPort});
192 : 452606 : nBestReachability = nReachability;
193 : 452606 : nBestScore = nScore;
194 : : }
195 : : }
196 : 0 : }
197 [ + + ]: 227319 : return addr;
198 : 125304 : }
199 : :
200 : : //! Convert the serialized seeds into usable address objects.
201 : 0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
202 : : {
203 : : // It'll only connect to one or two seed nodes because once it connects,
204 : : // it'll get a pile of addresses with newer timestamps.
205 : : // Seed nodes are given a random 'last seen time' of between one and two
206 : : // weeks ago.
207 : 0 : const auto one_week{7 * 24h};
208 : 0 : std::vector<CAddress> vSeedsOut;
209 : 0 : FastRandomContext rng;
210 [ # # ]: 0 : ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
211 [ # # ]: 0 : while (!s.eof()) {
212 [ # # ]: 0 : CService endpoint;
213 [ # # ]: 0 : s >> endpoint;
214 : 0 : CAddress addr{endpoint, SeedsServiceFlags()};
215 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
216 [ # # # # : 0 : LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
# # # # ]
217 [ # # ]: 0 : vSeedsOut.push_back(addr);
218 : 0 : }
219 : 0 : return vSeedsOut;
220 : 0 : }
221 : :
222 : : // Determine the "best" local address for a particular peer.
223 : : // If none, return the unroutable 0.0.0.0 but filled in with
224 : : // the normal parameters, since the IP may be changed to a useful
225 : : // one by discovery.
226 : 125304 : CService GetLocalAddress(const CNode& peer)
227 : : {
228 [ + - + - : 125304 : return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
+ - ]
229 : : }
230 : :
231 : 0 : static int GetnScore(const CService& addr)
232 : : {
233 : 0 : LOCK(g_maplocalhost_mutex);
234 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
235 [ # # # # ]: 0 : return (it != mapLocalHost.end()) ? it->second.nScore : 0;
236 : 0 : }
237 : :
238 : : // Is our peer's addrLocal potentially useful as an external IP source?
239 : 4576 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
240 : : {
241 : 4576 : CService addrLocal = pnode->GetAddrLocal();
242 [ + - + - : 4576 : return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
+ + + - -
+ - - ]
243 [ - - ]: 4576 : g_reachable_nets.Contains(addrLocal);
244 : 4576 : }
245 : :
246 : 4576 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
247 : : {
248 : 4576 : CService addrLocal{GetLocalAddress(node)};
249 : : // If discovery is enabled, sometimes give our peer the address it
250 : : // tells us that it sees us as in case it has a better idea of our
251 : : // address than we do.
252 : 4576 : FastRandomContext rng;
253 [ + - - + : 4576 : if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
- - - - -
- ]
254 [ # # # # ]: 0 : rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
255 : : {
256 [ # # ]: 0 : if (node.IsInboundConn()) {
257 : : // For inbound connections, assume both the address and the port
258 : : // as seen from the peer.
259 [ # # ]: 0 : addrLocal = CService{node.GetAddrLocal()};
260 : : } else {
261 : : // For outbound connections, assume just the address as seen from
262 : : // the peer and leave the port in `addrLocal` as returned by
263 : : // `GetLocalAddress()` above. The peer has no way to observe our
264 : : // listening port when we have initiated the connection.
265 [ # # # # ]: 0 : addrLocal.SetIP(node.GetAddrLocal());
266 : : }
267 : : }
268 [ + - - + ]: 4576 : if (addrLocal.IsRoutable()) {
269 [ # # # # : 0 : LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
# # # # ]
270 : 0 : return addrLocal;
271 : : }
272 : : // Address is unroutable. Don't advertise.
273 : 4576 : return std::nullopt;
274 : 4576 : }
275 : :
276 : : // learn a new local address
277 : 248810 : bool AddLocal(const CService& addr_, int nScore)
278 : : {
279 : 248810 : CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280 : :
281 [ + - + + ]: 248810 : if (!addr.IsRoutable())
282 : : return false;
283 : :
284 [ - + - - ]: 166947 : if (!fDiscover && nScore < LOCAL_MANUAL)
285 : : return false;
286 : :
287 [ + - + - ]: 166947 : if (!g_reachable_nets.Contains(addr))
288 : : return false;
289 : :
290 [ + - + - ]: 166947 : LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291 : :
292 : 166947 : {
293 [ + - ]: 166947 : LOCK(g_maplocalhost_mutex);
294 [ + - + + ]: 166947 : const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295 [ + + ]: 166947 : LocalServiceInfo &info = it->second;
296 [ + + + + ]: 166947 : if (is_newly_added || nScore >= info.nScore) {
297 [ + + ]: 50748 : info.nScore = nScore + (is_newly_added ? 0 : 1);
298 [ + - ]: 50748 : info.nPort = addr.GetPort();
299 : : }
300 : 0 : }
301 : :
302 : 166947 : return true;
303 : 248810 : }
304 : :
305 : 0 : bool AddLocal(const CNetAddr &addr, int nScore)
306 : : {
307 [ # # ]: 0 : return AddLocal(CService(addr, GetListenPort()), nScore);
308 : : }
309 : :
310 : 42307 : void RemoveLocal(const CService& addr)
311 : : {
312 : 42307 : LOCK(g_maplocalhost_mutex);
313 [ + - + - ]: 42307 : LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314 [ + - + - ]: 42307 : mapLocalHost.erase(addr);
315 : 42307 : }
316 : :
317 : : /** vote for a local address */
318 : 198398 : bool SeenLocal(const CService& addr)
319 : : {
320 : 198398 : LOCK(g_maplocalhost_mutex);
321 [ + - ]: 198398 : const auto it = mapLocalHost.find(addr);
322 [ + + ]: 198398 : if (it == mapLocalHost.end()) return false;
323 : 183715 : ++it->second.nScore;
324 : 183715 : return true;
325 : 198398 : }
326 : :
327 : :
328 : : /** check whether a given address is potentially local */
329 : 181134 : bool IsLocal(const CService& addr)
330 : : {
331 : 181134 : LOCK(g_maplocalhost_mutex);
332 [ + - + - ]: 181134 : return mapLocalHost.count(addr) > 0;
333 : 181134 : }
334 : :
335 : 0 : CNode* CConnman::FindNode(const CNetAddr& ip)
336 : : {
337 : 0 : LOCK(m_nodes_mutex);
338 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
339 [ # # # # ]: 0 : if (static_cast<CNetAddr>(pnode->addr) == ip) {
340 : : return pnode;
341 : : }
342 : : }
343 : : return nullptr;
344 : 0 : }
345 : :
346 : 33731 : CNode* CConnman::FindNode(const std::string& addrName)
347 : : {
348 : 33731 : LOCK(m_nodes_mutex);
349 [ + + ]: 2567269 : for (CNode* pnode : m_nodes) {
350 [ + + ]: 2534032 : if (pnode->m_addr_name == addrName) {
351 : : return pnode;
352 : : }
353 : : }
354 : : return nullptr;
355 : 33731 : }
356 : :
357 : 0 : CNode* CConnman::FindNode(const CService& addr)
358 : : {
359 : 0 : LOCK(m_nodes_mutex);
360 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
361 [ # # # # ]: 0 : if (static_cast<CService>(pnode->addr) == addr) {
362 : : return pnode;
363 : : }
364 : : }
365 : : return nullptr;
366 : 0 : }
367 : :
368 : 0 : bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
369 : : {
370 [ # # # # : 0 : return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
# # # # #
# ]
371 : : }
372 : :
373 : 9952 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
374 : : {
375 : 9952 : LOCK(m_nodes_mutex);
376 [ + + ]: 26499 : for (const CNode* pnode : m_nodes) {
377 [ + + + + : 17103 : if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
+ + ]
378 : : return false;
379 : : }
380 : : return true;
381 : 9952 : }
382 : :
383 : : /** Get the bind address for a socket as CAddress */
384 : 0 : static CAddress GetBindAddress(const Sock& sock)
385 : : {
386 : 0 : CAddress addr_bind;
387 : 0 : struct sockaddr_storage sockaddr_bind;
388 : 0 : socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
389 [ # # # # ]: 0 : if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
390 [ # # ]: 0 : addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
391 : : } else {
392 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
# # ]
393 : : }
394 : 0 : return addr_bind;
395 : 0 : }
396 : :
397 : 0 : CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
398 : : {
399 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
400 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
401 : :
402 [ # # ]: 0 : if (pszDest == nullptr) {
403 [ # # ]: 0 : if (IsLocal(addrConnect))
404 : : return nullptr;
405 : :
406 : : // Look for an existing connection
407 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
408 [ # # ]: 0 : if (pnode)
409 : : {
410 : 0 : LogPrintf("Failed to open new connection, already connected\n");
411 : 0 : return nullptr;
412 : : }
413 : : }
414 : :
415 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
# # # # #
# ]
416 : : use_v2transport ? "v2" : "v1",
417 : : pszDest ? pszDest : addrConnect.ToStringAddrPort(),
418 : : Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
419 : :
420 : : // Resolve
421 [ # # # # ]: 0 : const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
422 : 0 : m_params.GetDefaultPort()};
423 : :
424 : : // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
425 : 0 : std::vector<CAddress> connect_to{};
426 [ # # ]: 0 : if (pszDest) {
427 [ # # # # : 0 : std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
# # # # #
# # # ]
428 [ # # ]: 0 : if (!resolved.empty()) {
429 : 0 : std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
430 : : // If the connection is made by name, it can be the case that the name resolves to more than one address.
431 : : // We don't want to connect any more of them if we are already connected to one
432 [ # # ]: 0 : for (const auto& r : resolved) {
433 [ # # ]: 0 : addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
434 [ # # # # ]: 0 : if (!addrConnect.IsValid()) {
435 [ # # # # : 0 : LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
# # # # ]
436 : 0 : return nullptr;
437 : : }
438 : : // It is possible that we already have a connection to the IP/port pszDest resolved to.
439 : : // In that case, drop the connection that was just created.
440 [ # # ]: 0 : LOCK(m_nodes_mutex);
441 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
442 [ # # ]: 0 : if (pnode) {
443 [ # # # # ]: 0 : LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
444 [ # # ]: 0 : return nullptr;
445 : : }
446 : : // Add the address to the resolved addresses vector so we can try to connect to it later on
447 [ # # ]: 0 : connect_to.push_back(addrConnect);
448 : 0 : }
449 : : } else {
450 : : // For resolution via proxy
451 [ # # ]: 0 : connect_to.push_back(addrConnect);
452 : : }
453 : 0 : } else {
454 : : // Connect via addrConnect directly
455 [ # # ]: 0 : connect_to.push_back(addrConnect);
456 : : }
457 : :
458 : : // Connect
459 : 0 : std::unique_ptr<Sock> sock;
460 [ # # ]: 0 : Proxy proxy;
461 [ # # ]: 0 : CAddress addr_bind;
462 [ # # # # ]: 0 : assert(!addr_bind.IsValid());
463 : 0 : std::unique_ptr<i2p::sam::Session> i2p_transient_session;
464 : :
465 [ # # ]: 0 : for (auto& target_addr: connect_to) {
466 [ # # # # ]: 0 : if (target_addr.IsValid()) {
467 [ # # # # ]: 0 : const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
468 : 0 : bool proxyConnectionFailed = false;
469 : :
470 [ # # # # ]: 0 : if (target_addr.IsI2P() && use_proxy) {
471 [ # # ]: 0 : i2p::Connection conn;
472 : 0 : bool connected{false};
473 : :
474 [ # # ]: 0 : if (m_i2p_sam_session) {
475 [ # # ]: 0 : connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
476 : : } else {
477 : 0 : {
478 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
479 [ # # ]: 0 : if (m_unused_i2p_sessions.empty()) {
480 : 0 : i2p_transient_session =
481 [ # # ]: 0 : std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
482 : : } else {
483 : 0 : i2p_transient_session.swap(m_unused_i2p_sessions.front());
484 : 0 : m_unused_i2p_sessions.pop();
485 : : }
486 : 0 : }
487 [ # # ]: 0 : connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
488 [ # # ]: 0 : if (!connected) {
489 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
490 [ # # ]: 0 : if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
491 [ # # # # ]: 0 : m_unused_i2p_sessions.emplace(i2p_transient_session.release());
492 : : }
493 : 0 : }
494 : : }
495 : :
496 [ # # ]: 0 : if (connected) {
497 : 0 : sock = std::move(conn.sock);
498 : 0 : addr_bind = CAddress{conn.me, NODE_NONE};
499 : : }
500 [ # # ]: 0 : } else if (use_proxy) {
501 [ # # # # : 0 : LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
# # # # #
# ]
502 [ # # # # : 0 : sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
# # ]
503 : : } else {
504 : : // no proxy needed (none set for target network)
505 [ # # ]: 0 : sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
506 : : }
507 [ # # ]: 0 : if (!proxyConnectionFailed) {
508 : : // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
509 : : // the proxy, mark this as an attempt.
510 [ # # ]: 0 : addrman.Attempt(target_addr, fCountFailure);
511 : : }
512 [ # # # # : 0 : } else if (pszDest && GetNameProxy(proxy)) {
# # ]
513 [ # # ]: 0 : std::string host;
514 : 0 : uint16_t port{default_port};
515 [ # # # # ]: 0 : SplitHostPort(std::string(pszDest), port, host);
516 : 0 : bool proxyConnectionFailed;
517 [ # # ]: 0 : sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
518 : 0 : }
519 : : // Check any other resolved address (if any) if we fail to connect
520 [ # # ]: 0 : if (!sock) {
521 : 0 : continue;
522 : : }
523 : :
524 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
525 [ # # # # ]: 0 : std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
526 [ # # ]: 0 : AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
527 : :
528 : : // Add node
529 [ # # ]: 0 : NodeId id = GetNewNodeId();
530 [ # # # # : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
# # ]
531 [ # # # # ]: 0 : if (!addr_bind.IsValid()) {
532 [ # # ]: 0 : addr_bind = GetBindAddress(*sock);
533 : : }
534 : 0 : CNode* pnode = new CNode(id,
535 : : std::move(sock),
536 : : target_addr,
537 : : CalculateKeyedNetGroup(target_addr),
538 : : nonce,
539 : : addr_bind,
540 : 0 : pszDest ? pszDest : "",
541 : : conn_type,
542 : : /*inbound_onion=*/false,
543 [ # # ]: 0 : CNodeOptions{
544 : : .permission_flags = permission_flags,
545 : : .i2p_sam_session = std::move(i2p_transient_session),
546 [ # # ]: 0 : .recv_flood_size = nReceiveFloodSize,
547 : : .use_v2transport = use_v2transport,
548 [ # # # # : 0 : });
# # # # #
# # # #
# ]
549 : 0 : pnode->AddRef();
550 : :
551 : : // We're making a new connection, harvest entropy from the time (and our peer count)
552 : 0 : RandAddEvent((uint32_t)id);
553 : :
554 : 0 : return pnode;
555 : 0 : }
556 : :
557 : : return nullptr;
558 : 0 : }
559 : :
560 : 38363 : void CNode::CloseSocketDisconnect()
561 : : {
562 : 38363 : fDisconnect = true;
563 : 38363 : LOCK(m_sock_mutex);
564 [ + + ]: 38363 : if (m_sock) {
565 [ + - - + : 17467 : LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
- - - - ]
566 : 17467 : m_sock.reset();
567 : :
568 : : TRACEPOINT(net, closed_connection,
569 : : GetId(),
570 : : m_addr_name.c_str(),
571 : : ConnectionTypeAsString().c_str(),
572 : : ConnectedThroughNetwork(),
573 : 17467 : Ticks<std::chrono::seconds>(m_connected));
574 : : }
575 [ - + + - ]: 38363 : m_i2p_sam_session.reset();
576 : 38363 : }
577 : :
578 : 0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
579 [ # # ]: 0 : for (const auto& subnet : ranges) {
580 [ # # ]: 0 : if (subnet.m_subnet.Match(addr)) {
581 : 0 : NetPermissions::AddFlag(flags, subnet.m_flags);
582 : : }
583 : : }
584 [ # # ]: 0 : if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
585 [ # # ]: 0 : NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
586 [ # # ]: 0 : if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
587 [ # # ]: 0 : if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
588 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
589 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
590 : : }
591 : 0 : }
592 : :
593 : 221798 : CService CNode::GetAddrLocal() const
594 : : {
595 : 221798 : AssertLockNotHeld(m_addr_local_mutex);
596 : 221798 : LOCK(m_addr_local_mutex);
597 [ + - ]: 221798 : return m_addr_local;
598 : 221798 : }
599 : :
600 : 17734 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
601 : 17734 : AssertLockNotHeld(m_addr_local_mutex);
602 : 17734 : LOCK(m_addr_local_mutex);
603 [ + - + - : 17734 : if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
+ - ]
604 : 17734 : m_addr_local = addrLocalIn;
605 : : }
606 : 17734 : }
607 : :
608 : 21523517 : Network CNode::ConnectedThroughNetwork() const
609 : : {
610 [ + + ]: 21523517 : return m_inbound_onion ? NET_ONION : addr.GetNetClass();
611 : : }
612 : :
613 : 12648082 : bool CNode::IsConnectedThroughPrivacyNet() const
614 : : {
615 [ + + + + ]: 12648082 : return m_inbound_onion || addr.IsPrivacyNet();
616 : : }
617 : :
618 : : #undef X
619 : : #define X(name) stats.name = name
620 : 215621 : void CNode::CopyStats(CNodeStats& stats)
621 : : {
622 : 215621 : stats.nodeid = this->GetId();
623 : 215621 : X(addr);
624 : 215621 : X(addrBind);
625 : 215621 : stats.m_network = ConnectedThroughNetwork();
626 : 215621 : X(m_last_send);
627 : 215621 : X(m_last_recv);
628 : 215621 : X(m_last_tx_time);
629 : 215621 : X(m_last_block_time);
630 : 215621 : X(m_connected);
631 : 215621 : X(m_addr_name);
632 : 215621 : X(nVersion);
633 : 215621 : {
634 : 215621 : LOCK(m_subver_mutex);
635 [ + - + - ]: 431242 : X(cleanSubVer);
636 : 0 : }
637 : 215621 : stats.fInbound = IsInboundConn();
638 : 215621 : X(m_bip152_highbandwidth_to);
639 : 215621 : X(m_bip152_highbandwidth_from);
640 : 215621 : {
641 : 215621 : LOCK(cs_vSend);
642 [ + - ]: 215621 : X(mapSendBytesPerMsgType);
643 [ + - ]: 215621 : X(nSendBytes);
644 : 0 : }
645 : 215621 : {
646 : 215621 : LOCK(cs_vRecv);
647 [ + - ]: 215621 : X(mapRecvBytesPerMsgType);
648 : 215621 : X(nRecvBytes);
649 : 215621 : Transport::Info info = m_transport->GetInfo();
650 : 215621 : stats.m_transport_type = info.transport_type;
651 [ - + - - ]: 215621 : if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
652 : 0 : }
653 : 215621 : X(m_permission_flags);
654 : :
655 : 215621 : X(m_last_ping_time);
656 : 215621 : X(m_min_ping_time);
657 : :
658 : : // Leave string empty if addrLocal invalid (not filled in yet)
659 : 215621 : CService addrLocalUnlocked = GetAddrLocal();
660 [ + - + + : 215621 : stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
+ - + - ]
661 : :
662 : 215621 : X(m_conn_type);
663 : 215621 : }
664 : : #undef X
665 : :
666 : 366059 : bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
667 : : {
668 : 366059 : complete = false;
669 : 366059 : const auto time = GetTime<std::chrono::microseconds>();
670 : 366059 : LOCK(cs_vRecv);
671 : 366059 : m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
672 : 366059 : nRecvBytes += msg_bytes.size();
673 [ + + ]: 1106290 : while (msg_bytes.size() > 0) {
674 : : // absorb network data
675 [ + - + + ]: 403687 : if (!m_transport->ReceivedBytes(msg_bytes)) {
676 : : // Serious transport problem, disconnect from the peer.
677 : : return false;
678 : : }
679 : :
680 [ + - + + ]: 374172 : if (m_transport->ReceivedMessageComplete()) {
681 : : // decompose a transport agnostic CNetMessage from the deserializer
682 : 197037 : bool reject_message{false};
683 [ + - ]: 197037 : CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
684 [ + + ]: 197037 : if (reject_message) {
685 : : // Message deserialization failed. Drop the message but don't disconnect the peer.
686 : : // store the size of the corrupt message
687 [ + - ]: 31964 : mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
688 : 31964 : continue;
689 : : }
690 : :
691 : : // Store received bytes per message type.
692 : : // To prevent a memory DOS, only allow known message types.
693 : 165073 : auto i = mapRecvBytesPerMsgType.find(msg.m_type);
694 [ + + ]: 165073 : if (i == mapRecvBytesPerMsgType.end()) {
695 : 22341 : i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
696 : : }
697 [ - + ]: 165073 : assert(i != mapRecvBytesPerMsgType.end());
698 [ + - ]: 165073 : i->second += msg.m_raw_message_size;
699 : :
700 : : // push the message to the process queue,
701 [ + - ]: 165073 : vRecvMsg.push_back(std::move(msg));
702 : :
703 : 165073 : complete = true;
704 : 197037 : }
705 : : }
706 : :
707 : : return true;
708 : 366059 : }
709 : :
710 : 7844 : std::string CNode::LogIP(bool log_ip) const
711 : : {
712 [ - + - - : 7844 : return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
- - + - -
- ]
713 : : }
714 : :
715 : 135 : std::string CNode::DisconnectMsg(bool log_ip) const
716 : : {
717 : 135 : return strprintf("disconnecting peer=%d%s",
718 [ + - ]: 135 : GetId(),
719 [ + - ]: 270 : LogIP(log_ip));
720 : : }
721 : :
722 : 70017 : V1Transport::V1Transport(const NodeId node_id) noexcept
723 : 70017 : : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
724 : : {
725 : 70017 : LOCK(m_recv_mutex);
726 [ + - ]: 70017 : Reset();
727 : 70017 : }
728 : :
729 : 226291 : Transport::Info V1Transport::GetInfo() const noexcept
730 : : {
731 : 226291 : return {.transport_type = TransportProtocolType::V1, .session_id = {}};
732 : : }
733 : :
734 : 351076 : int V1Transport::readHeader(Span<const uint8_t> msg_bytes)
735 : : {
736 : 351076 : AssertLockHeld(m_recv_mutex);
737 : : // copy data to temporary parsing buffer
738 : 351076 : unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
739 [ + + ]: 351076 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
740 : :
741 [ + + ]: 351076 : memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
742 : 351076 : nHdrPos += nCopy;
743 : :
744 : : // if header incomplete, exit
745 [ + + ]: 351076 : if (nHdrPos < CMessageHeader::HEADER_SIZE)
746 : 31731 : return nCopy;
747 : :
748 : : // deserialize to CMessageHeader
749 : 319345 : try {
750 [ + - ]: 319345 : hdrbuf >> hdr;
751 : : }
752 [ - - ]: 0 : catch (const std::exception&) {
753 [ - - - - : 0 : LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
- - ]
754 : 0 : return -1;
755 : 0 : }
756 : :
757 : : // Check start string, network magic
758 [ + + ]: 319345 : if (hdr.pchMessageStart != m_magic_bytes) {
759 [ - + - - ]: 25496 : LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
760 : 25496 : return -1;
761 : : }
762 : :
763 : : // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
764 [ + + ]: 293849 : if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
765 [ - + - - : 4148 : LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
- - ]
766 : 4148 : return -1;
767 : : }
768 : :
769 : : // switch state to reading message data
770 : 289701 : in_data = true;
771 : :
772 : 289701 : return nCopy;
773 : : }
774 : :
775 : 240042 : int V1Transport::readData(Span<const uint8_t> msg_bytes)
776 : : {
777 : 240042 : AssertLockHeld(m_recv_mutex);
778 : 240042 : unsigned int nRemaining = hdr.nMessageSize - nDataPos;
779 [ + + ]: 240042 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
780 : :
781 [ + + ]: 240042 : if (vRecv.size() < nDataPos + nCopy) {
782 : : // Allocate up to 256 KiB ahead, but never more than the total message size.
783 [ + + ]: 397378 : vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
784 : : }
785 : :
786 : 240042 : hasher.Write(msg_bytes.first(nCopy));
787 : 240042 : memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
788 : 240042 : nDataPos += nCopy;
789 : :
790 : 240042 : return nCopy;
791 : : }
792 : :
793 : 289524 : const uint256& V1Transport::GetMessageHash() const
794 : : {
795 : 289524 : AssertLockHeld(m_recv_mutex);
796 [ + - - + ]: 289524 : assert(CompleteInternal());
797 [ + - ]: 289524 : if (data_hash.IsNull())
798 : 289524 : hasher.Finalize(data_hash);
799 : 289524 : return data_hash;
800 : : }
801 : :
802 : 289524 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
803 : : {
804 : 289524 : AssertLockNotHeld(m_recv_mutex);
805 : : // Initialize out parameter
806 : 289524 : reject_message = false;
807 : : // decompose a single CNetMessage from the TransportDeserializer
808 : 289524 : LOCK(m_recv_mutex);
809 [ + - ]: 289524 : CNetMessage msg(std::move(vRecv));
810 : :
811 : : // store message type string, time, and sizes
812 [ + - ]: 289524 : msg.m_type = hdr.GetMessageType();
813 : 289524 : msg.m_time = time;
814 : 289524 : msg.m_message_size = hdr.nMessageSize;
815 : 289524 : msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
816 : :
817 [ + - ]: 289524 : uint256 hash = GetMessageHash();
818 : :
819 : : // We just received a message off the wire, harvest entropy from the time (and the message checksum)
820 : 289524 : RandAddEvent(ReadLE32(hash.begin()));
821 : :
822 : : // Check checksum and header message type string
823 [ + + ]: 289524 : if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
824 [ + - - + : 18390 : LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
- - - - -
- - - ]
825 : : SanitizeString(msg.m_type), msg.m_message_size,
826 : : HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
827 : : HexStr(hdr.pchChecksum),
828 : : m_node_id);
829 : 18390 : reject_message = true;
830 [ + - + + ]: 271134 : } else if (!hdr.IsMessageTypeValid()) {
831 [ + - - + : 39943 : LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
- - - - -
- ]
832 : : SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
833 : 39943 : reject_message = true;
834 : : }
835 : :
836 : : // Always reset the network deserializer (prepare for the next message)
837 [ + - ]: 289524 : Reset();
838 [ + - ]: 289524 : return msg;
839 : 289524 : }
840 : :
841 : 598632 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
842 : : {
843 : 598632 : AssertLockNotHeld(m_send_mutex);
844 : : // Determine whether a new message can be set.
845 : 598632 : LOCK(m_send_mutex);
846 [ + + + + ]: 598632 : if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
847 : :
848 : : // create dbl-sha256 checksum
849 : 441581 : uint256 hash = Hash(msg.data);
850 : :
851 : : // create header
852 : 441581 : CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
853 [ + + ]: 441581 : memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
854 : :
855 : : // serialize header
856 [ + + ]: 441581 : m_header_to_send.clear();
857 : 441581 : VectorWriter{m_header_to_send, 0, hdr};
858 : :
859 : : // update state
860 : 441581 : m_message_to_send = std::move(msg);
861 : 441581 : m_sending_header = true;
862 : 441581 : m_bytes_sent = 0;
863 : 441581 : return true;
864 : 598632 : }
865 : :
866 : 3061225 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
867 : : {
868 : 3061225 : AssertLockNotHeld(m_send_mutex);
869 : 3061225 : LOCK(m_send_mutex);
870 [ + + ]: 3061225 : if (m_sending_header) {
871 [ + + ]: 1042642 : return {Span{m_header_to_send}.subspan(m_bytes_sent),
872 : : // We have more to send after the header if the message has payload, or if there
873 : : // is a next message after that.
874 [ + + + + ]: 1042642 : have_next_message || !m_message_to_send.data.empty(),
875 : 1042642 : m_message_to_send.m_type
876 : 1042642 : };
877 : : } else {
878 : 2018583 : return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
879 : : // We only have more to send after this message's payload if there is another
880 : : // message.
881 : : have_next_message,
882 : 2018583 : m_message_to_send.m_type
883 : 2018583 : };
884 : : }
885 : 3061225 : }
886 : :
887 : 911034 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
888 : : {
889 : 911034 : AssertLockNotHeld(m_send_mutex);
890 : 911034 : LOCK(m_send_mutex);
891 : 911034 : m_bytes_sent += bytes_sent;
892 [ + + + + ]: 911034 : if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
893 : : // We're done sending a message's header. Switch to sending its data bytes.
894 : 436195 : m_sending_header = false;
895 : 436195 : m_bytes_sent = 0;
896 [ + + + + ]: 474839 : } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
897 : : // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
898 : 345687 : ClearShrink(m_message_to_send.data);
899 : 345687 : m_bytes_sent = 0;
900 : : }
901 : 911034 : }
902 : :
903 : 471488 : size_t V1Transport::GetSendMemoryUsage() const noexcept
904 : : {
905 : 471488 : AssertLockNotHeld(m_send_mutex);
906 : 471488 : LOCK(m_send_mutex);
907 : : // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
908 [ + - ]: 471488 : return m_message_to_send.GetMemoryUsage();
909 : 471488 : }
910 : :
911 : : namespace {
912 : :
913 : : /** List of short messages as defined in BIP324, in order.
914 : : *
915 : : * Only message types that are actually implemented in this codebase need to be listed, as other
916 : : * messages get ignored anyway - whether we know how to decode them or not.
917 : : */
918 : : const std::array<std::string, 33> V2_MESSAGE_IDS = {
919 : : "", // 12 bytes follow encoding the message type like in V1
920 : : NetMsgType::ADDR,
921 : : NetMsgType::BLOCK,
922 : : NetMsgType::BLOCKTXN,
923 : : NetMsgType::CMPCTBLOCK,
924 : : NetMsgType::FEEFILTER,
925 : : NetMsgType::FILTERADD,
926 : : NetMsgType::FILTERCLEAR,
927 : : NetMsgType::FILTERLOAD,
928 : : NetMsgType::GETBLOCKS,
929 : : NetMsgType::GETBLOCKTXN,
930 : : NetMsgType::GETDATA,
931 : : NetMsgType::GETHEADERS,
932 : : NetMsgType::HEADERS,
933 : : NetMsgType::INV,
934 : : NetMsgType::MEMPOOL,
935 : : NetMsgType::MERKLEBLOCK,
936 : : NetMsgType::NOTFOUND,
937 : : NetMsgType::PING,
938 : : NetMsgType::PONG,
939 : : NetMsgType::SENDCMPCT,
940 : : NetMsgType::TX,
941 : : NetMsgType::GETCFILTERS,
942 : : NetMsgType::CFILTER,
943 : : NetMsgType::GETCFHEADERS,
944 : : NetMsgType::CFHEADERS,
945 : : NetMsgType::GETCFCHECKPT,
946 : : NetMsgType::CFCHECKPT,
947 : : NetMsgType::ADDRV2,
948 : : // Unimplemented message types that are assigned in BIP324:
949 : : "",
950 : : "",
951 : : "",
952 : : ""
953 : : };
954 : :
955 : : class V2MessageMap
956 : : {
957 : : std::unordered_map<std::string, uint8_t> m_map;
958 : :
959 : : public:
960 : 209 : V2MessageMap() noexcept
961 : 209 : {
962 [ + + ]: 6897 : for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
963 : 6688 : m_map.emplace(V2_MESSAGE_IDS[i], i);
964 : : }
965 : 209 : }
966 : :
967 : 41641 : std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
968 : : {
969 : 41641 : auto it = m_map.find(message_name);
970 [ + + ]: 41641 : if (it == m_map.end()) return std::nullopt;
971 : 32421 : return it->second;
972 : : }
973 : : };
974 : :
975 : : const V2MessageMap V2_MESSAGE_MAP;
976 : :
977 : 0 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
978 : : {
979 : 0 : std::vector<uint8_t> ret;
980 : 0 : FastRandomContext rng;
981 : 0 : ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
982 : 0 : rng.fillrand(MakeWritableByteSpan(ret));
983 : 0 : return ret;
984 : 0 : }
985 : :
986 : : } // namespace
987 : :
988 : 3460 : void V2Transport::StartSendingHandshake() noexcept
989 : : {
990 : 3460 : AssertLockHeld(m_send_mutex);
991 : 3460 : Assume(m_send_state == SendState::AWAITING_KEY);
992 : 3460 : Assume(m_send_buffer.empty());
993 : : // Initialize the send buffer with ellswift pubkey + provided garbage.
994 : 3460 : m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
995 : 3460 : std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
996 : 3460 : std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
997 : : // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
998 : 3460 : }
999 : :
1000 : 4519 : V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1001 : 4519 : : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1002 : 4519 : m_v1_fallback{nodeid},
1003 [ + + ]: 4519 : m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1004 : 4519 : m_send_garbage{std::move(garbage)},
1005 [ + + ]: 11694 : m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1006 : : {
1007 : 4519 : Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1008 : : // Start sending immediately if we're the initiator of the connection.
1009 [ + + ]: 4519 : if (initiating) {
1010 : 1863 : LOCK(m_send_mutex);
1011 [ + - ]: 1863 : StartSendingHandshake();
1012 : 1863 : }
1013 : 4519 : }
1014 : :
1015 : 0 : V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1016 : 0 : : V2Transport{nodeid, initiating, GenerateRandomKey(),
1017 : 0 : MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1018 : :
1019 : 95225 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1020 : : {
1021 : 95225 : AssertLockHeld(m_recv_mutex);
1022 : : // Enforce allowed state transitions.
1023 [ + + + + : 95225 : switch (m_recv_state) {
+ + - - ]
1024 : 2361 : case RecvState::KEY_MAYBE_V1:
1025 : 2361 : Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1026 : 2361 : break;
1027 : 3194 : case RecvState::KEY:
1028 : 3194 : Assume(recv_state == RecvState::GARB_GARBTERM);
1029 : 3194 : break;
1030 : 3194 : case RecvState::GARB_GARBTERM:
1031 : 3194 : Assume(recv_state == RecvState::VERSION);
1032 : 3194 : break;
1033 : 3194 : case RecvState::VERSION:
1034 : 3194 : Assume(recv_state == RecvState::APP);
1035 : 3194 : break;
1036 : 41641 : case RecvState::APP:
1037 : 41641 : Assume(recv_state == RecvState::APP_READY);
1038 : 41641 : break;
1039 : 41641 : case RecvState::APP_READY:
1040 : 41641 : Assume(recv_state == RecvState::APP);
1041 : 41641 : break;
1042 : 0 : case RecvState::V1:
1043 : 0 : Assume(false); // V1 state cannot be left
1044 : 0 : break;
1045 : : }
1046 : : // Change state.
1047 : 95225 : m_recv_state = recv_state;
1048 : 95225 : }
1049 : :
1050 : 5555 : void V2Transport::SetSendState(SendState send_state) noexcept
1051 : : {
1052 : 5555 : AssertLockHeld(m_send_mutex);
1053 : : // Enforce allowed state transitions.
1054 [ + + - - ]: 5555 : switch (m_send_state) {
1055 : 2361 : case SendState::MAYBE_V1:
1056 : 2361 : Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1057 : 2361 : break;
1058 : 3194 : case SendState::AWAITING_KEY:
1059 : 3194 : Assume(send_state == SendState::READY);
1060 : 3194 : break;
1061 : 0 : case SendState::READY:
1062 : 0 : case SendState::V1:
1063 : 0 : Assume(false); // Final states
1064 : 0 : break;
1065 : : }
1066 : : // Change state.
1067 : 5555 : m_send_state = send_state;
1068 : 5555 : }
1069 : :
1070 : 134662 : bool V2Transport::ReceivedMessageComplete() const noexcept
1071 : : {
1072 : 134662 : AssertLockNotHeld(m_recv_mutex);
1073 : 134662 : LOCK(m_recv_mutex);
1074 [ + + ]: 134662 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1075 : :
1076 : 99026 : return m_recv_state == RecvState::APP_READY;
1077 : 134662 : }
1078 : :
1079 : 2788 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1080 : : {
1081 : 2788 : AssertLockHeld(m_recv_mutex);
1082 : 2788 : AssertLockNotHeld(m_send_mutex);
1083 : 2788 : Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1084 : : // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1085 : : // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1086 : : // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1087 : : // sending of the key.
1088 : 2788 : std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1089 : 2788 : std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1090 : 2788 : Assume(m_recv_buffer.size() <= v1_prefix.size());
1091 [ + + ]: 2788 : if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1092 : : // Mismatch with v1 prefix, so we can assume a v2 connection.
1093 : 1597 : SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1094 : : // Transition the sender to AWAITING_KEY state and start sending.
1095 : 1597 : LOCK(m_send_mutex);
1096 : 1597 : SetSendState(SendState::AWAITING_KEY);
1097 [ + - ]: 1597 : StartSendingHandshake();
1098 [ + + ]: 2788 : } else if (m_recv_buffer.size() == v1_prefix.size()) {
1099 : : // Full match with the v1 prefix, so fall back to v1 behavior.
1100 : 764 : LOCK(m_send_mutex);
1101 : 764 : Span<const uint8_t> feedback{m_recv_buffer};
1102 : : // Feed already received bytes to v1 transport. It should always accept these, because it's
1103 : : // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1104 : 764 : bool ret = m_v1_fallback.ReceivedBytes(feedback);
1105 : 764 : Assume(feedback.empty());
1106 : 764 : Assume(ret);
1107 : 764 : SetReceiveState(RecvState::V1);
1108 : 764 : SetSendState(SendState::V1);
1109 : : // Reset v2 transport buffers to save memory.
1110 : 764 : ClearShrink(m_recv_buffer);
1111 [ + - ]: 764 : ClearShrink(m_send_buffer);
1112 : 764 : } else {
1113 : : // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1114 : : }
1115 : 2788 : }
1116 : :
1117 : 4802 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
1118 : : {
1119 : 4802 : AssertLockHeld(m_recv_mutex);
1120 : 4802 : AssertLockNotHeld(m_send_mutex);
1121 : 4802 : Assume(m_recv_state == RecvState::KEY);
1122 : 4802 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1123 : :
1124 : : // As a special exception, if bytes 4-16 of the key on a responder connection match the
1125 : : // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1126 : : // (if they did, we'd have switched to V1 state already), assume this is a peer from
1127 : : // another network, and disconnect them. They will almost certainly disconnect us too when
1128 : : // they receive our uniformly random key and garbage, but detecting this case specially
1129 : : // means we can log it.
1130 : 4802 : static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1131 : 4802 : static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1132 [ + + + + ]: 4802 : if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1133 [ - + ]: 2371 : if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1134 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1135 : : HexStr(Span(m_recv_buffer).first(OFFSET)));
1136 : 0 : return false;
1137 : : }
1138 : : }
1139 : :
1140 [ + + ]: 4802 : if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1141 : : // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1142 : : // our key to initialize the encryption ciphers.
1143 : :
1144 : : // Initialize the ciphers.
1145 : 3194 : EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1146 : 3194 : LOCK(m_send_mutex);
1147 : 3194 : m_cipher.Initialize(ellswift, m_initiating);
1148 : :
1149 : : // Switch receiver state to GARB_GARBTERM.
1150 : 3194 : SetReceiveState(RecvState::GARB_GARBTERM);
1151 [ + - ]: 3194 : m_recv_buffer.clear();
1152 : :
1153 : : // Switch sender state to READY.
1154 : 3194 : SetSendState(SendState::READY);
1155 : :
1156 : : // Append the garbage terminator to the send buffer.
1157 : 3194 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1158 : 6388 : std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1159 : 3194 : m_cipher.GetSendGarbageTerminator().end(),
1160 : 3194 : MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1161 : :
1162 : : // Construct version packet in the send buffer, with the sent garbage data as AAD.
1163 : 3194 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1164 : 3194 : m_cipher.Encrypt(
1165 : : /*contents=*/VERSION_CONTENTS,
1166 : 3194 : /*aad=*/MakeByteSpan(m_send_garbage),
1167 : : /*ignore=*/false,
1168 : 3194 : /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1169 : : // We no longer need the garbage.
1170 [ + - ]: 3194 : ClearShrink(m_send_garbage);
1171 : 3194 : } else {
1172 : : // We still have to receive more key bytes.
1173 : : }
1174 : : return true;
1175 : : }
1176 : :
1177 : 5634657 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1178 : : {
1179 : 5634657 : AssertLockHeld(m_recv_mutex);
1180 : 5634657 : Assume(m_recv_state == RecvState::GARB_GARBTERM);
1181 : 5634657 : Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1182 [ + + ]: 5634657 : if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1183 [ + + ]: 5586747 : if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1184 : : // Garbage terminator received. Store garbage to authenticate it as AAD later.
1185 : 3194 : m_recv_aad = std::move(m_recv_buffer);
1186 : 3194 : m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1187 [ - + ]: 3194 : m_recv_buffer.clear();
1188 : 3194 : SetReceiveState(RecvState::VERSION);
1189 [ - + ]: 5583553 : } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1190 : : // We've reached the maximum length for garbage + garbage terminator, and the
1191 : : // terminator still does not match. Abort.
1192 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1193 : 0 : return false;
1194 : : } else {
1195 : : // We still need to receive more garbage and/or garbage terminator bytes.
1196 : : }
1197 : : } else {
1198 : : // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1199 : : // more first.
1200 : : }
1201 : : return true;
1202 : : }
1203 : :
1204 : 132628 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
1205 : : {
1206 : 132628 : AssertLockHeld(m_recv_mutex);
1207 : 132628 : Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1208 : :
1209 : : // The maximum permitted contents length for a packet, consisting of:
1210 : : // - 0x00 byte: indicating long message type encoding
1211 : : // - 12 bytes of message type
1212 : : // - payload
1213 : 132628 : static constexpr size_t MAX_CONTENTS_LEN =
1214 : : 1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1215 : : std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1216 : :
1217 [ + + ]: 132628 : if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1218 : : // Length descriptor received.
1219 : 44835 : m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1220 [ - + ]: 44835 : if (m_recv_len > MAX_CONTENTS_LEN) {
1221 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1222 : 0 : return false;
1223 : : }
1224 [ + + + + ]: 87793 : } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1225 : : // Ciphertext received, decrypt it into m_recv_decode_buffer.
1226 : : // Note that it is impossible to reach this branch without hitting the branch above first,
1227 : : // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1228 : 44835 : m_recv_decode_buffer.resize(m_recv_len);
1229 : 44835 : bool ignore{false};
1230 : 89670 : bool ret = m_cipher.Decrypt(
1231 : 44835 : /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1232 : 44835 : /*aad=*/MakeByteSpan(m_recv_aad),
1233 : : /*ignore=*/ignore,
1234 : : /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1235 [ - + ]: 44835 : if (!ret) {
1236 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1237 : 0 : return false;
1238 : : }
1239 : : // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1240 : 44835 : ClearShrink(m_recv_aad);
1241 : : // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1242 : 44835 : RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1243 : :
1244 : : // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1245 : : // decoy, which we simply ignore, use the current state to decide what to do with it.
1246 [ + - ]: 44835 : if (!ignore) {
1247 [ + + - ]: 44835 : switch (m_recv_state) {
1248 : 3194 : case RecvState::VERSION:
1249 : : // Version message received; transition to application phase. The contents is
1250 : : // ignored, but can be used for future extensions.
1251 : 3194 : SetReceiveState(RecvState::APP);
1252 : 3194 : break;
1253 : 41641 : case RecvState::APP:
1254 : : // Application message decrypted correctly. It can be extracted using GetMessage().
1255 : 41641 : SetReceiveState(RecvState::APP_READY);
1256 : 41641 : break;
1257 : 0 : default:
1258 : : // Any other state is invalid (this function should not have been called).
1259 : 0 : Assume(false);
1260 : : }
1261 : : }
1262 : : // Wipe the receive buffer where the next packet will be received into.
1263 : 44835 : ClearShrink(m_recv_buffer);
1264 : : // In all but APP_READY state, we can wipe the decoded contents.
1265 [ + + ]: 44835 : if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1266 : : } else {
1267 : : // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1268 : : // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1269 : : }
1270 : : return true;
1271 : : }
1272 : :
1273 : 5814308 : size_t V2Transport::GetMaxBytesToProcess() noexcept
1274 : : {
1275 : 5814308 : AssertLockHeld(m_recv_mutex);
1276 [ + + + + : 5814308 : switch (m_recv_state) {
- - + ]
1277 : 2788 : case RecvState::KEY_MAYBE_V1:
1278 : : // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1279 : : // receive buffer.
1280 : 2788 : Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1281 : : // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1282 : : // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1283 : : // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1284 : : // back into the m_v1_fallback V1 transport.
1285 : 2788 : return V1_PREFIX_LEN - m_recv_buffer.size();
1286 : 4802 : case RecvState::KEY:
1287 : : // During the KEY state, we only allow the 64-byte key into the receive buffer.
1288 : 4802 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1289 : : // As long as we have not received the other side's public key, don't receive more than
1290 : : // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1291 : : // key exchange first.
1292 : 4802 : return EllSwiftPubKey::size() - m_recv_buffer.size();
1293 : : case RecvState::GARB_GARBTERM:
1294 : : // Process garbage bytes one by one (because terminator may appear anywhere).
1295 : : return 1;
1296 : 132628 : case RecvState::VERSION:
1297 : 132628 : case RecvState::APP:
1298 : : // These three states all involve decoding a packet. Process the length descriptor first,
1299 : : // so that we know where the current packet ends (and we don't process bytes from the next
1300 : : // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1301 [ + + ]: 132628 : if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1302 : 46069 : return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1303 : : } else {
1304 : : // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1305 : : // and encoded packet size, which includes the 3 bytes due to the packet length.
1306 : : // When transitioning from receiving the packet length to receiving its ciphertext,
1307 : : // the encrypted packet length is left in the receive buffer.
1308 : 86559 : return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1309 : : }
1310 : 39433 : case RecvState::APP_READY:
1311 : : // No bytes can be processed until GetMessage() is called.
1312 : 39433 : return 0;
1313 : 0 : case RecvState::V1:
1314 : : // Not allowed (must be dealt with by the caller).
1315 : 0 : Assume(false);
1316 : 0 : return 0;
1317 : : }
1318 : 0 : Assume(false); // unreachable
1319 : 0 : return 0;
1320 : : }
1321 : :
1322 : 134662 : bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
1323 : : {
1324 : 134662 : AssertLockNotHeld(m_recv_mutex);
1325 : : /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1326 : 134662 : static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1327 : :
1328 : 134662 : LOCK(m_recv_mutex);
1329 [ + + ]: 134662 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1330 : :
1331 : : // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1332 : : // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1333 : : // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1334 : : // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1335 [ + + ]: 5873901 : while (!msg_bytes.empty()) {
1336 : : // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1337 : 5814308 : size_t max_read = GetMaxBytesToProcess();
1338 : :
1339 : : // Reserve space in the buffer if there is not enough.
1340 [ + + + + ]: 5873939 : if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1341 [ + + - - : 93628 : switch (m_recv_state) {
- ]
1342 : 3958 : case RecvState::KEY_MAYBE_V1:
1343 : 3958 : case RecvState::KEY:
1344 : 3958 : case RecvState::GARB_GARBTERM:
1345 : : // During the initial states (key/garbage), allocate once to fit the maximum (4111
1346 : : // bytes).
1347 : 3958 : m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1348 : 3958 : break;
1349 : 89670 : case RecvState::VERSION:
1350 : 89670 : case RecvState::APP: {
1351 : : // During states where a packet is being received, as much as is expected but never
1352 : : // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1353 : : // This means attackers that want to cause us to waste allocated memory are limited
1354 : : // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1355 : : // MAX_RESERVE_AHEAD more than they've actually sent us.
1356 [ + - ]: 89670 : size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1357 : 89670 : m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1358 : 89670 : break;
1359 : : }
1360 : 0 : case RecvState::APP_READY:
1361 : : // The buffer is empty in this state.
1362 : 0 : Assume(m_recv_buffer.empty());
1363 : 0 : break;
1364 : 0 : case RecvState::V1:
1365 : : // Should have bailed out above.
1366 : 0 : Assume(false);
1367 : 0 : break;
1368 : : }
1369 : : }
1370 : :
1371 : : // Can't read more than provided input.
1372 [ + + ]: 5814308 : max_read = std::min(msg_bytes.size(), max_read);
1373 : : // Copy data to buffer.
1374 : 5814308 : m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1375 [ + + + + : 5814308 : msg_bytes = msg_bytes.subspan(max_read);
- - + ]
1376 : :
1377 : : // Process data in the buffer.
1378 [ + + + + : 5814308 : switch (m_recv_state) {
- - + ]
1379 : 2788 : case RecvState::KEY_MAYBE_V1:
1380 : 2788 : ProcessReceivedMaybeV1Bytes();
1381 [ + + ]: 2788 : if (m_recv_state == RecvState::V1) return true;
1382 : : break;
1383 : :
1384 : 4802 : case RecvState::KEY:
1385 [ + - ]: 4802 : if (!ProcessReceivedKeyBytes()) return false;
1386 : : break;
1387 : :
1388 : 5634657 : case RecvState::GARB_GARBTERM:
1389 [ + - ]: 5634657 : if (!ProcessReceivedGarbageBytes()) return false;
1390 : : break;
1391 : :
1392 : 132628 : case RecvState::VERSION:
1393 : 132628 : case RecvState::APP:
1394 [ + - ]: 132628 : if (!ProcessReceivedPacketBytes()) return false;
1395 : : break;
1396 : :
1397 : : case RecvState::APP_READY:
1398 : : return true;
1399 : :
1400 : 0 : case RecvState::V1:
1401 : : // We should have bailed out before.
1402 : 0 : Assume(false);
1403 : 0 : break;
1404 : : }
1405 : : // Make sure we have made progress before continuing.
1406 : 5774111 : Assume(max_read > 0);
1407 : : }
1408 : :
1409 : : return true;
1410 : 134662 : }
1411 : :
1412 : 41641 : std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1413 : : {
1414 [ - + ]: 41641 : if (contents.size() == 0) return std::nullopt; // Empty contents
1415 [ + + ]: 41641 : uint8_t first_byte = contents[0];
1416 [ + + ]: 41641 : contents = contents.subspan(1); // Strip first byte.
1417 : :
1418 [ + + ]: 41641 : if (first_byte != 0) {
1419 : : // Short (1 byte) encoding.
1420 [ + - ]: 32421 : if (first_byte < std::size(V2_MESSAGE_IDS)) {
1421 : : // Valid short message id.
1422 : 32421 : return V2_MESSAGE_IDS[first_byte];
1423 : : } else {
1424 : : // Unknown short message id.
1425 : 0 : return std::nullopt;
1426 : : }
1427 : : }
1428 : :
1429 [ + - ]: 9220 : if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1430 : 0 : return std::nullopt; // Long encoding needs 12 message type bytes.
1431 : : }
1432 : :
1433 : : size_t msg_type_len{0};
1434 [ + + + + ]: 68023 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1435 : : // Verify that message type bytes before the first 0x00 are in range.
1436 [ - + + - ]: 58803 : if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1437 : 0 : return {};
1438 : : }
1439 : 58803 : ++msg_type_len;
1440 : : }
1441 : 9220 : std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1442 [ + + ]: 61057 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1443 : : // Verify that message type bytes after the first 0x00 are also 0x00.
1444 [ - + ]: 51837 : if (contents[msg_type_len] != 0) return {};
1445 : 51837 : ++msg_type_len;
1446 : : }
1447 : : // Strip message type bytes of contents.
1448 : 9220 : contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1449 : 9220 : return ret;
1450 : 9220 : }
1451 : :
1452 : 56843 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1453 : : {
1454 : 56843 : AssertLockNotHeld(m_recv_mutex);
1455 : 56843 : LOCK(m_recv_mutex);
1456 [ + + ]: 56843 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1457 : :
1458 : 41641 : Assume(m_recv_state == RecvState::APP_READY);
1459 : 41641 : Span<const uint8_t> contents{m_recv_decode_buffer};
1460 : 41641 : auto msg_type = GetMessageType(contents);
1461 : 41641 : CNetMessage msg{DataStream{}};
1462 : : // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1463 [ + - ]: 41641 : msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1464 [ + - ]: 41641 : if (msg_type) {
1465 : 41641 : reject_message = false;
1466 : 41641 : msg.m_type = std::move(*msg_type);
1467 : 41641 : msg.m_time = time;
1468 : 41641 : msg.m_message_size = contents.size();
1469 : 41641 : msg.m_recv.resize(contents.size());
1470 : 41641 : std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1471 : : } else {
1472 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1473 : 0 : reject_message = true;
1474 : : }
1475 : 41641 : ClearShrink(m_recv_decode_buffer);
1476 : 41641 : SetReceiveState(RecvState::APP);
1477 : :
1478 : 41641 : return msg;
1479 : 41641 : }
1480 : :
1481 : 240242 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1482 : : {
1483 : 240242 : AssertLockNotHeld(m_send_mutex);
1484 : 240242 : LOCK(m_send_mutex);
1485 [ + + ]: 240242 : if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1486 : : // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1487 : : // is available) and the send buffer is empty. This limits the number of messages in the send
1488 : : // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1489 [ + + + + ]: 226102 : if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1490 : : // Construct contents (encoding message type + payload).
1491 : 41641 : std::vector<uint8_t> contents;
1492 : 41641 : auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1493 [ + + ]: 41641 : if (short_message_id) {
1494 : 32421 : contents.resize(1 + msg.data.size());
1495 : 32421 : contents[0] = *short_message_id;
1496 : 32421 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1497 : : } else {
1498 : : // Initialize with zeroes, and then write the message type string starting at offset 1.
1499 : : // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1500 : 9220 : contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1501 : 9220 : std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1502 : 9220 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1503 : : }
1504 : : // Construct ciphertext in send buffer.
1505 : 41641 : m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1506 : 41641 : m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1507 : 41641 : m_send_type = msg.m_type;
1508 : : // Release memory
1509 : 41641 : ClearShrink(msg.data);
1510 : 41641 : return true;
1511 : 41641 : }
1512 : :
1513 : 1804676 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1514 : : {
1515 : 1804676 : AssertLockNotHeld(m_send_mutex);
1516 : 1804676 : LOCK(m_send_mutex);
1517 [ + + ]: 1804676 : if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1518 : :
1519 [ + + ]: 1554296 : if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1520 : 1554296 : Assume(m_send_pos <= m_send_buffer.size());
1521 : 1554296 : return {
1522 [ + + ]: 1554296 : Span{m_send_buffer}.subspan(m_send_pos),
1523 : : // We only have more to send after the current m_send_buffer if there is a (next)
1524 : : // message to be sent, and we're capable of sending packets. */
1525 [ + + + + ]: 1554296 : have_next_message && m_send_state == SendState::READY,
1526 : 1554296 : m_send_type
1527 : 1554296 : };
1528 : 1804676 : }
1529 : :
1530 : 202806 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1531 : : {
1532 : 202806 : AssertLockNotHeld(m_send_mutex);
1533 : 202806 : LOCK(m_send_mutex);
1534 [ + + + - ]: 202806 : if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1535 : :
1536 [ + + + + : 175306 : if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
+ - ]
1537 [ - + ]: 1784 : LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1538 : : }
1539 : :
1540 : 175306 : m_send_pos += bytes_sent;
1541 : 175306 : Assume(m_send_pos <= m_send_buffer.size());
1542 [ + + ]: 175306 : if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1543 : 123938 : m_sent_v1_header_worth = true;
1544 : : }
1545 : : // Wipe the buffer when everything is sent.
1546 [ + + ]: 175306 : if (m_send_pos == m_send_buffer.size()) {
1547 : 45738 : m_send_pos = 0;
1548 : 45738 : ClearShrink(m_send_buffer);
1549 : : }
1550 : 202806 : }
1551 : :
1552 : 0 : bool V2Transport::ShouldReconnectV1() const noexcept
1553 : : {
1554 : 0 : AssertLockNotHeld(m_send_mutex);
1555 : 0 : AssertLockNotHeld(m_recv_mutex);
1556 : : // Only outgoing connections need reconnection.
1557 [ # # ]: 0 : if (!m_initiating) return false;
1558 : :
1559 : 0 : LOCK(m_recv_mutex);
1560 : : // We only reconnect in the very first state and when the receive buffer is empty. Together
1561 : : // these conditions imply nothing has been received so far.
1562 [ # # ]: 0 : if (m_recv_state != RecvState::KEY) return false;
1563 [ # # ]: 0 : if (!m_recv_buffer.empty()) return false;
1564 : : // Check if we've sent enough for the other side to disconnect us (if it was V1).
1565 : 0 : LOCK(m_send_mutex);
1566 [ # # ]: 0 : return m_sent_v1_header_worth;
1567 : 0 : }
1568 : :
1569 : 0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
1570 : : {
1571 : 0 : AssertLockNotHeld(m_send_mutex);
1572 : 0 : LOCK(m_send_mutex);
1573 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1574 : :
1575 [ # # ]: 0 : return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1576 : 0 : }
1577 : :
1578 : 4243 : Transport::Info V2Transport::GetInfo() const noexcept
1579 : : {
1580 : 4243 : AssertLockNotHeld(m_recv_mutex);
1581 : 4243 : LOCK(m_recv_mutex);
1582 [ + + ]: 4243 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1583 : :
1584 [ + + ]: 3479 : Transport::Info info;
1585 : :
1586 : : // Do not report v2 and session ID until the version packet has been received
1587 : : // and verified (confirming that the other side very likely has the same keys as us).
1588 [ + + ]: 3479 : if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1589 : : m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1590 : 3194 : info.transport_type = TransportProtocolType::V2;
1591 : 3194 : info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1592 : : } else {
1593 : 285 : info.transport_type = TransportProtocolType::DETECTING;
1594 : : }
1595 : :
1596 : 3479 : return info;
1597 : 4243 : }
1598 : :
1599 : 191299 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1600 : : {
1601 : 191299 : auto it = node.vSendMsg.begin();
1602 : 191299 : size_t nSentSize = 0;
1603 : 191299 : bool data_left{false}; //!< second return value (whether unsent data remains)
1604 : 191299 : std::optional<bool> expected_more;
1605 : :
1606 : 477919 : while (true) {
1607 [ + + ]: 477919 : if (it != node.vSendMsg.end()) {
1608 : : // If possible, move one message from the send queue to the transport. This fails when
1609 : : // there is an existing message still being sent, or (for v2 transports) when the
1610 : : // handshake has not yet completed.
1611 : 191299 : size_t memusage = it->GetMemoryUsage();
1612 [ + - ]: 191299 : if (node.m_transport->SetMessageToSend(*it)) {
1613 : : // Update memory usage of send buffer (as *it will be deleted).
1614 : 191299 : node.m_send_memusage -= memusage;
1615 : 191299 : ++it;
1616 : : }
1617 : : }
1618 [ + + ]: 477919 : const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1619 : : // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1620 : : // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1621 : : // verify that the previously returned 'more' was correct.
1622 [ + + ]: 477919 : if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1623 [ + + ]: 477919 : expected_more = more;
1624 [ + + ]: 477919 : data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1625 : 477919 : int nBytes = 0;
1626 [ + + ]: 477919 : if (!data.empty()) {
1627 : 322511 : LOCK(node.m_sock_mutex);
1628 : : // There is no socket in case we've already disconnected, or in test cases without
1629 : : // real connections. In these cases, we bail out immediately and just leave things
1630 : : // in the send queue and transport.
1631 [ + + ]: 322511 : if (!node.m_sock) {
1632 : : break;
1633 : : }
1634 : 305810 : int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1635 : : #ifdef MSG_MORE
1636 [ + + ]: 305810 : if (more) {
1637 : 142122 : flags |= MSG_MORE;
1638 : : }
1639 : : #endif
1640 [ + - + - ]: 305810 : nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1641 : 16701 : }
1642 [ + + ]: 305810 : if (nBytes > 0) {
1643 : 300282 : node.m_last_send = GetTime<std::chrono::seconds>();
1644 : 300282 : node.nSendBytes += nBytes;
1645 : : // Notify transport that bytes have been processed.
1646 : 300282 : node.m_transport->MarkBytesSent(nBytes);
1647 : : // Update statistics per message type.
1648 [ + + ]: 300282 : if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1649 : 293075 : node.AccountForSentBytes(msg_type, nBytes);
1650 : : }
1651 : 300282 : nSentSize += nBytes;
1652 [ + + ]: 300282 : if ((size_t)nBytes != data.size()) {
1653 : : // could not send full message; stop sending more
1654 : : break;
1655 : : }
1656 : : } else {
1657 [ + + ]: 160936 : if (nBytes < 0) {
1658 : : // error
1659 : 4341 : int nErr = WSAGetLastError();
1660 [ + + + + ]: 4341 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1661 [ - + - - : 3512 : LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
- - ]
1662 : 3512 : node.CloseSocketDisconnect();
1663 : : }
1664 : : }
1665 : : break;
1666 : : }
1667 : : }
1668 : :
1669 [ + - ]: 191299 : node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1670 : :
1671 [ + - ]: 191299 : if (it == node.vSendMsg.end()) {
1672 [ - + ]: 191299 : assert(node.m_send_memusage == 0);
1673 : : }
1674 : 191299 : node.vSendMsg.erase(node.vSendMsg.begin(), it);
1675 : 191299 : return {nSentSize, data_left};
1676 : : }
1677 : :
1678 : : /** Try to find a connection to evict when the node is full.
1679 : : * Extreme care must be taken to avoid opening the node to attacker
1680 : : * triggered network partitioning.
1681 : : * The strategy used here is to protect a small number of peers
1682 : : * for each of several distinct characteristics which are difficult
1683 : : * to forge. In order to partition a node the attacker must be
1684 : : * simultaneously better at all of them than honest peers.
1685 : : */
1686 : 0 : bool CConnman::AttemptToEvictConnection()
1687 : : {
1688 : 0 : std::vector<NodeEvictionCandidate> vEvictionCandidates;
1689 : 0 : {
1690 : :
1691 [ # # ]: 0 : LOCK(m_nodes_mutex);
1692 [ # # ]: 0 : for (const CNode* node : m_nodes) {
1693 [ # # ]: 0 : if (node->fDisconnect)
1694 : 0 : continue;
1695 : 0 : NodeEvictionCandidate candidate{
1696 : 0 : .id = node->GetId(),
1697 : : .m_connected = node->m_connected,
1698 : 0 : .m_min_ping_time = node->m_min_ping_time,
1699 : 0 : .m_last_block_time = node->m_last_block_time,
1700 : 0 : .m_last_tx_time = node->m_last_tx_time,
1701 [ # # ]: 0 : .fRelevantServices = node->m_has_all_wanted_services,
1702 : 0 : .m_relay_txs = node->m_relays_txs.load(),
1703 : 0 : .fBloomFilter = node->m_bloom_filter_loaded.load(),
1704 : 0 : .nKeyedNetGroup = node->nKeyedNetGroup,
1705 : 0 : .prefer_evict = node->m_prefer_evict,
1706 [ # # ]: 0 : .m_is_local = node->addr.IsLocal(),
1707 : 0 : .m_network = node->ConnectedThroughNetwork(),
1708 : 0 : .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1709 : 0 : .m_conn_type = node->m_conn_type,
1710 [ # # # # : 0 : };
# # ]
1711 [ # # ]: 0 : vEvictionCandidates.push_back(candidate);
1712 : : }
1713 : 0 : }
1714 [ # # ]: 0 : const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1715 [ # # ]: 0 : if (!node_id_to_evict) {
1716 : : return false;
1717 : : }
1718 [ # # ]: 0 : LOCK(m_nodes_mutex);
1719 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1720 [ # # ]: 0 : if (pnode->GetId() == *node_id_to_evict) {
1721 [ # # # # : 0 : LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
# # # # ]
1722 : : TRACEPOINT(net, evicted_inbound_connection,
1723 : : pnode->GetId(),
1724 : : pnode->m_addr_name.c_str(),
1725 : : pnode->ConnectionTypeAsString().c_str(),
1726 : : pnode->ConnectedThroughNetwork(),
1727 : 0 : Ticks<std::chrono::seconds>(pnode->m_connected));
1728 : 0 : pnode->fDisconnect = true;
1729 : 0 : return true;
1730 : : }
1731 : : }
1732 : : return false;
1733 : 0 : }
1734 : :
1735 : 0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1736 : 0 : struct sockaddr_storage sockaddr;
1737 : 0 : socklen_t len = sizeof(sockaddr);
1738 : 0 : auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1739 [ # # ]: 0 : CAddress addr;
1740 : :
1741 [ # # ]: 0 : if (!sock) {
1742 : 0 : const int nErr = WSAGetLastError();
1743 [ # # ]: 0 : if (nErr != WSAEWOULDBLOCK) {
1744 [ # # # # ]: 0 : LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1745 : : }
1746 : 0 : return;
1747 : : }
1748 : :
1749 [ # # # # ]: 0 : if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
1750 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
# # ]
1751 : : } else {
1752 [ # # ]: 0 : addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
1753 : : }
1754 : :
1755 [ # # # # ]: 0 : const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
1756 : :
1757 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
1758 [ # # ]: 0 : hListenSocket.AddSocketPermissionFlags(permission_flags);
1759 : :
1760 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1761 : 0 : }
1762 : :
1763 : 0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1764 : : NetPermissionFlags permission_flags,
1765 : : const CAddress& addr_bind,
1766 : : const CAddress& addr)
1767 : : {
1768 : 0 : int nInbound = 0;
1769 : :
1770 : 0 : AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1771 : :
1772 : 0 : {
1773 : 0 : LOCK(m_nodes_mutex);
1774 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
1775 [ # # ]: 0 : if (pnode->IsInboundConn()) nInbound++;
1776 : : }
1777 : 0 : }
1778 : :
1779 [ # # ]: 0 : if (!fNetworkActive) {
1780 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1781 : 0 : return;
1782 : : }
1783 : :
1784 [ # # ]: 0 : if (!sock->IsSelectable()) {
1785 [ # # ]: 0 : LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1786 : 0 : return;
1787 : : }
1788 : :
1789 : : // According to the internet TCP_NODELAY is not carried into accepted sockets
1790 : : // on all platforms. Set it again here just to be sure.
1791 : 0 : const int on{1};
1792 [ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1793 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1794 : : addr.ToStringAddrPort());
1795 : : }
1796 : :
1797 : : // Don't accept connections from banned peers.
1798 [ # # # # ]: 0 : bool banned = m_banman && m_banman->IsBanned(addr);
1799 [ # # # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1800 : : {
1801 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1802 : 0 : return;
1803 : : }
1804 : :
1805 : : // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1806 [ # # # # ]: 0 : bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1807 [ # # # # : 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
# # ]
1808 : : {
1809 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1810 : 0 : return;
1811 : : }
1812 : :
1813 [ # # ]: 0 : if (nInbound >= m_max_inbound)
1814 : : {
1815 [ # # ]: 0 : if (!AttemptToEvictConnection()) {
1816 : : // No connection to evict, disconnect the new connection
1817 [ # # ]: 0 : LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1818 : 0 : return;
1819 : : }
1820 : : }
1821 : :
1822 : 0 : NodeId id = GetNewNodeId();
1823 : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1824 : :
1825 : 0 : const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1826 : : // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1827 : : // detected, so use it whenever we signal NODE_P2P_V2.
1828 : 0 : ServiceFlags local_services = GetLocalServices();
1829 : 0 : const bool use_v2transport(local_services & NODE_P2P_V2);
1830 : :
1831 : 0 : CNode* pnode = new CNode(id,
1832 : : std::move(sock),
1833 : : addr,
1834 : : CalculateKeyedNetGroup(addr),
1835 : : nonce,
1836 : : addr_bind,
1837 : : /*addrNameIn=*/"",
1838 : : ConnectionType::INBOUND,
1839 : : inbound_onion,
1840 [ # # ]: 0 : CNodeOptions{
1841 : : .permission_flags = permission_flags,
1842 : : .prefer_evict = discouraged,
1843 : 0 : .recv_flood_size = nReceiveFloodSize,
1844 : : .use_v2transport = use_v2transport,
1845 [ # # # # : 0 : });
# # # # #
# ]
1846 : 0 : pnode->AddRef();
1847 : 0 : m_msgproc->InitializeNode(*pnode, local_services);
1848 : 0 : {
1849 : 0 : LOCK(m_nodes_mutex);
1850 [ # # ]: 0 : m_nodes.push_back(pnode);
1851 : 0 : }
1852 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1853 : : TRACEPOINT(net, inbound_connection,
1854 : : pnode->GetId(),
1855 : : pnode->m_addr_name.c_str(),
1856 : : pnode->ConnectionTypeAsString().c_str(),
1857 : : pnode->ConnectedThroughNetwork(),
1858 : 0 : GetNodeCount(ConnectionDirection::In));
1859 : :
1860 : : // We received a new connection, harvest entropy from the time (and our peer count)
1861 : 0 : RandAddEvent((uint32_t)id);
1862 : : }
1863 : :
1864 : 0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1865 : : {
1866 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1867 : 0 : std::optional<int> max_connections;
1868 [ # # # # ]: 0 : switch (conn_type) {
1869 : : case ConnectionType::INBOUND:
1870 : : case ConnectionType::MANUAL:
1871 : : return false;
1872 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
1873 : 0 : max_connections = m_max_outbound_full_relay;
1874 : 0 : break;
1875 : 0 : case ConnectionType::BLOCK_RELAY:
1876 : 0 : max_connections = m_max_outbound_block_relay;
1877 : 0 : break;
1878 : : // no limit for ADDR_FETCH because -seednode has no limit either
1879 : : case ConnectionType::ADDR_FETCH:
1880 : : break;
1881 : : // no limit for FEELER connections since they're short-lived
1882 : : case ConnectionType::FEELER:
1883 : : break;
1884 : : } // no default case, so the compiler can warn about missing cases
1885 : :
1886 : : // Count existing connections
1887 [ # # # # ]: 0 : int existing_connections = WITH_LOCK(m_nodes_mutex,
1888 : : return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1889 : :
1890 : : // Max connections of specified type already exist
1891 [ # # ]: 0 : if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1892 : :
1893 : : // Max total outbound connections already exist
1894 : 0 : CSemaphoreGrant grant(*semOutbound, true);
1895 [ # # ]: 0 : if (!grant) return false;
1896 : :
1897 [ # # # # ]: 0 : OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1898 : 0 : return true;
1899 : : }
1900 : :
1901 : 0 : void CConnman::DisconnectNodes()
1902 : : {
1903 : 0 : AssertLockNotHeld(m_nodes_mutex);
1904 : 0 : AssertLockNotHeld(m_reconnections_mutex);
1905 : :
1906 : : // Use a temporary variable to accumulate desired reconnections, so we don't need
1907 : : // m_reconnections_mutex while holding m_nodes_mutex.
1908 [ # # ]: 0 : decltype(m_reconnections) reconnections_to_add;
1909 : :
1910 : 0 : {
1911 [ # # ]: 0 : LOCK(m_nodes_mutex);
1912 : :
1913 [ # # ]: 0 : if (!fNetworkActive) {
1914 : : // Disconnect any connected nodes
1915 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1916 [ # # ]: 0 : if (!pnode->fDisconnect) {
1917 [ # # # # : 0 : LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
# # # # ]
1918 : 0 : pnode->fDisconnect = true;
1919 : : }
1920 : : }
1921 : : }
1922 : :
1923 : : // Disconnect unused nodes
1924 [ # # ]: 0 : std::vector<CNode*> nodes_copy = m_nodes;
1925 [ # # ]: 0 : for (CNode* pnode : nodes_copy)
1926 : : {
1927 [ # # ]: 0 : if (pnode->fDisconnect)
1928 : : {
1929 : : // remove from m_nodes
1930 : 0 : m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1931 : :
1932 : : // Add to reconnection list if appropriate. We don't reconnect right here, because
1933 : : // the creation of a connection is a blocking operation (up to several seconds),
1934 : : // and we don't want to hold up the socket handler thread for that long.
1935 [ # # ]: 0 : if (pnode->m_transport->ShouldReconnectV1()) {
1936 : 0 : reconnections_to_add.push_back({
1937 : 0 : .addr_connect = pnode->addr,
1938 [ # # ]: 0 : .grant = std::move(pnode->grantOutbound),
1939 : 0 : .destination = pnode->m_dest,
1940 : 0 : .conn_type = pnode->m_conn_type,
1941 : : .use_v2transport = false});
1942 [ # # # # : 0 : LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
# # ]
1943 : : }
1944 : :
1945 : : // release outbound grant (if any)
1946 : 0 : pnode->grantOutbound.Release();
1947 : :
1948 : : // close socket and cleanup
1949 [ # # ]: 0 : pnode->CloseSocketDisconnect();
1950 : :
1951 : : // update connection count by network
1952 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1953 : :
1954 : : // hold in disconnected pool until all refs are released
1955 [ # # ]: 0 : pnode->Release();
1956 [ # # ]: 0 : m_nodes_disconnected.push_back(pnode);
1957 : : }
1958 : : }
1959 [ # # ]: 0 : }
1960 : 0 : {
1961 : : // Delete disconnected nodes
1962 [ # # ]: 0 : std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1963 [ # # ]: 0 : for (CNode* pnode : nodes_disconnected_copy)
1964 : : {
1965 : : // Destroy the object only after other threads have stopped using it.
1966 [ # # ]: 0 : if (pnode->GetRefCount() <= 0) {
1967 : 0 : m_nodes_disconnected.remove(pnode);
1968 [ # # ]: 0 : DeleteNode(pnode);
1969 : : }
1970 : : }
1971 : 0 : }
1972 : 0 : {
1973 : : // Move entries from reconnections_to_add to m_reconnections.
1974 [ # # ]: 0 : LOCK(m_reconnections_mutex);
1975 [ # # ]: 0 : m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1976 : 0 : }
1977 [ # # # # : 0 : }
# # ]
1978 : :
1979 : 0 : void CConnman::NotifyNumConnectionsChanged()
1980 : : {
1981 : 0 : size_t nodes_size;
1982 : 0 : {
1983 : 0 : LOCK(m_nodes_mutex);
1984 [ # # ]: 0 : nodes_size = m_nodes.size();
1985 : 0 : }
1986 [ # # ]: 0 : if(nodes_size != nPrevNodeCount) {
1987 : 0 : nPrevNodeCount = nodes_size;
1988 [ # # ]: 0 : if (m_client_interface) {
1989 : 0 : m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1990 : : }
1991 : : }
1992 : 0 : }
1993 : :
1994 : 1520001 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1995 : : {
1996 : 1520001 : return node.m_connected + m_peer_connect_timeout < now;
1997 : : }
1998 : :
1999 : 0 : bool CConnman::InactivityCheck(const CNode& node) const
2000 : : {
2001 : : // Tests that see disconnects after using mocktime can start nodes with a
2002 : : // large timeout. For example, -peertimeout=999999999.
2003 : 0 : const auto now{GetTime<std::chrono::seconds>()};
2004 : 0 : const auto last_send{node.m_last_send.load()};
2005 : 0 : const auto last_recv{node.m_last_recv.load()};
2006 : :
2007 [ # # ]: 0 : if (!ShouldRunInactivityChecks(node, now)) return false;
2008 : :
2009 [ # # ]: 0 : bool has_received{last_recv.count() != 0};
2010 : 0 : bool has_sent{last_send.count() != 0};
2011 : :
2012 [ # # ]: 0 : if (!has_received || !has_sent) {
2013 [ # # ]: 0 : std::string has_never;
2014 [ # # # # ]: 0 : if (!has_received) has_never += ", never received from peer";
2015 [ # # # # ]: 0 : if (!has_sent) has_never += ", never sent to peer";
2016 [ # # # # : 0 : LogDebug(BCLog::NET,
# # # # ]
2017 : : "socket no message in first %i seconds%s, %s\n",
2018 : : count_seconds(m_peer_connect_timeout),
2019 : : has_never,
2020 : : node.DisconnectMsg(fLogIPs)
2021 : : );
2022 : 0 : return true;
2023 : 0 : }
2024 : :
2025 [ # # ]: 0 : if (now > last_send + TIMEOUT_INTERVAL) {
2026 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2027 : : "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2028 : : node.DisconnectMsg(fLogIPs)
2029 : : );
2030 : 0 : return true;
2031 : : }
2032 : :
2033 [ # # ]: 0 : if (now > last_recv + TIMEOUT_INTERVAL) {
2034 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2035 : : "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2036 : : node.DisconnectMsg(fLogIPs)
2037 : : );
2038 : 0 : return true;
2039 : : }
2040 : :
2041 [ # # ]: 0 : if (!node.fSuccessfullyConnected) {
2042 [ # # ]: 0 : if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2043 [ # # # # ]: 0 : LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2044 : : } else {
2045 [ # # # # ]: 0 : LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2046 : : }
2047 : 0 : return true;
2048 : : }
2049 : :
2050 : : return false;
2051 : : }
2052 : :
2053 : 0 : Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
2054 : : {
2055 : 0 : Sock::EventsPerSock events_per_sock;
2056 : :
2057 [ # # ]: 0 : for (const ListenSocket& hListenSocket : vhListenSocket) {
2058 [ # # ]: 0 : events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2059 : : }
2060 : :
2061 [ # # ]: 0 : for (CNode* pnode : nodes) {
2062 [ # # ]: 0 : bool select_recv = !pnode->fPauseRecv;
2063 : 0 : bool select_send;
2064 : 0 : {
2065 [ # # ]: 0 : LOCK(pnode->cs_vSend);
2066 : : // Sending is possible if either there are bytes to send right now, or if there will be
2067 : : // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2068 : : // determines both of these in a single call.
2069 [ # # ]: 0 : const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2070 [ # # # # : 0 : select_send = !to_send.empty() || more;
# # ]
2071 : 0 : }
2072 [ # # ]: 0 : if (!select_recv && !select_send) continue;
2073 : :
2074 [ # # ]: 0 : LOCK(pnode->m_sock_mutex);
2075 [ # # ]: 0 : if (pnode->m_sock) {
2076 [ # # # # ]: 0 : Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2077 [ # # ]: 0 : events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2078 : : }
2079 : 0 : }
2080 : :
2081 : 0 : return events_per_sock;
2082 : 0 : }
2083 : :
2084 : 0 : void CConnman::SocketHandler()
2085 : : {
2086 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2087 : :
2088 [ # # ]: 0 : Sock::EventsPerSock events_per_sock;
2089 : :
2090 : 0 : {
2091 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/false};
2092 : :
2093 : 0 : const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2094 : :
2095 : : // Check for the readiness of the already connected sockets and the
2096 : : // listening sockets in one call ("readiness" as in poll(2) or
2097 : : // select(2)). If none are ready, wait for a short while and return
2098 : : // empty sets.
2099 [ # # ]: 0 : events_per_sock = GenerateWaitSockets(snap.Nodes());
2100 [ # # # # : 0 : if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
# # ]
2101 [ # # ]: 0 : interruptNet.sleep_for(timeout);
2102 : : }
2103 : :
2104 : : // Service (send/receive) each of the already connected nodes.
2105 [ # # ]: 0 : SocketHandlerConnected(snap.Nodes(), events_per_sock);
2106 : 0 : }
2107 : :
2108 : : // Accept new connections from listening sockets.
2109 [ # # ]: 0 : SocketHandlerListening(events_per_sock);
2110 : 0 : }
2111 : :
2112 : 0 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2113 : : const Sock::EventsPerSock& events_per_sock)
2114 : : {
2115 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2116 : :
2117 [ # # ]: 0 : for (CNode* pnode : nodes) {
2118 [ # # ]: 0 : if (interruptNet)
2119 : : return;
2120 : :
2121 : : //
2122 : : // Receive
2123 : : //
2124 : 0 : bool recvSet = false;
2125 : 0 : bool sendSet = false;
2126 : 0 : bool errorSet = false;
2127 : 0 : {
2128 : 0 : LOCK(pnode->m_sock_mutex);
2129 [ # # ]: 0 : if (!pnode->m_sock) {
2130 [ # # ]: 0 : continue;
2131 : : }
2132 [ # # # # ]: 0 : const auto it = events_per_sock.find(pnode->m_sock);
2133 [ # # ]: 0 : if (it != events_per_sock.end()) {
2134 : 0 : recvSet = it->second.occurred & Sock::RECV;
2135 : 0 : sendSet = it->second.occurred & Sock::SEND;
2136 : 0 : errorSet = it->second.occurred & Sock::ERR;
2137 : : }
2138 : 0 : }
2139 : :
2140 [ # # ]: 0 : if (sendSet) {
2141 : : // Send data
2142 [ # # # # ]: 0 : auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2143 [ # # ]: 0 : if (bytes_sent) {
2144 : 0 : RecordBytesSent(bytes_sent);
2145 : :
2146 : : // If both receiving and (non-optimistic) sending were possible, we first attempt
2147 : : // sending. If that succeeds, but does not fully drain the send queue, do not
2148 : : // attempt to receive. This avoids needlessly queueing data if the remote peer
2149 : : // is slow at receiving data, by means of TCP flow control. We only do this when
2150 : : // sending actually succeeded to make sure progress is always made; otherwise a
2151 : : // deadlock would be possible when both sides have data to send, but neither is
2152 : : // receiving.
2153 [ # # ]: 0 : if (data_left) recvSet = false;
2154 : : }
2155 : : }
2156 : :
2157 [ # # ]: 0 : if (recvSet || errorSet)
2158 : : {
2159 : : // typical socket buffer is 8K-64K
2160 : 0 : uint8_t pchBuf[0x10000];
2161 : 0 : int nBytes = 0;
2162 : 0 : {
2163 : 0 : LOCK(pnode->m_sock_mutex);
2164 [ # # ]: 0 : if (!pnode->m_sock) {
2165 [ # # ]: 0 : continue;
2166 : : }
2167 [ # # # # ]: 0 : nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2168 : 0 : }
2169 [ # # ]: 0 : if (nBytes > 0)
2170 : : {
2171 : 0 : bool notify = false;
2172 [ # # ]: 0 : if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2173 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2174 : : "receiving message bytes failed, %s\n",
2175 : : pnode->DisconnectMsg(fLogIPs)
2176 : : );
2177 : 0 : pnode->CloseSocketDisconnect();
2178 : : }
2179 : 0 : RecordBytesRecv(nBytes);
2180 [ # # ]: 0 : if (notify) {
2181 : 0 : pnode->MarkReceivedMsgsForProcessing();
2182 : 0 : WakeMessageHandler();
2183 : : }
2184 : : }
2185 [ # # ]: 0 : else if (nBytes == 0)
2186 : : {
2187 : : // socket closed gracefully
2188 [ # # ]: 0 : if (!pnode->fDisconnect) {
2189 [ # # # # ]: 0 : LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2190 : : }
2191 : 0 : pnode->CloseSocketDisconnect();
2192 : : }
2193 [ # # ]: 0 : else if (nBytes < 0)
2194 : : {
2195 : : // error
2196 : 0 : int nErr = WSAGetLastError();
2197 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2198 : : {
2199 [ # # ]: 0 : if (!pnode->fDisconnect) {
2200 [ # # # # : 0 : LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
# # ]
2201 : : }
2202 : 0 : pnode->CloseSocketDisconnect();
2203 : : }
2204 : : }
2205 : : }
2206 : :
2207 [ # # ]: 0 : if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2208 : : }
2209 : : }
2210 : :
2211 : 0 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2212 : : {
2213 [ # # ]: 0 : for (const ListenSocket& listen_socket : vhListenSocket) {
2214 [ # # ]: 0 : if (interruptNet) {
2215 : : return;
2216 : : }
2217 [ # # # # ]: 0 : const auto it = events_per_sock.find(listen_socket.sock);
2218 [ # # # # ]: 0 : if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2219 : 0 : AcceptConnection(listen_socket);
2220 : : }
2221 : : }
2222 : : }
2223 : :
2224 : 0 : void CConnman::ThreadSocketHandler()
2225 : : {
2226 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2227 : :
2228 [ # # ]: 0 : while (!interruptNet)
2229 : : {
2230 : 0 : DisconnectNodes();
2231 : 0 : NotifyNumConnectionsChanged();
2232 : 0 : SocketHandler();
2233 : : }
2234 : 0 : }
2235 : :
2236 : 0 : void CConnman::WakeMessageHandler()
2237 : : {
2238 : 0 : {
2239 : 0 : LOCK(mutexMsgProc);
2240 [ # # ]: 0 : fMsgProcWake = true;
2241 : 0 : }
2242 : 0 : condMsgProc.notify_one();
2243 : 0 : }
2244 : :
2245 : 0 : void CConnman::ThreadDNSAddressSeed()
2246 : : {
2247 : 0 : int outbound_connection_count = 0;
2248 : :
2249 [ # # # # ]: 0 : if (gArgs.IsArgSet("-seednode")) {
2250 : 0 : auto start = NodeClock::now();
2251 : 0 : constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2252 : 0 : LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2253 [ # # ]: 0 : while (!interruptNet) {
2254 [ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2255 : : return;
2256 : :
2257 : : // Abort if we have spent enough time without reaching our target.
2258 : : // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2259 [ # # ]: 0 : if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2260 : 0 : LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2261 : 0 : break;
2262 : : }
2263 : :
2264 : 0 : outbound_connection_count = GetFullOutboundConnCount();
2265 [ # # ]: 0 : if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2266 : 0 : LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2267 : 0 : break;
2268 : : }
2269 : : }
2270 : : }
2271 : :
2272 : 0 : FastRandomContext rng;
2273 [ # # ]: 0 : std::vector<std::string> seeds = m_params.DNSSeeds();
2274 : 0 : std::shuffle(seeds.begin(), seeds.end(), rng);
2275 : 0 : int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2276 : :
2277 [ # # # # : 0 : if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
# # ]
2278 : : // When -forcednsseed is provided, query all.
2279 : 0 : seeds_right_now = seeds.size();
2280 [ # # # # ]: 0 : } else if (addrman.Size() == 0) {
2281 : : // If we have no known peers, query all.
2282 : : // This will occur on the first run, or if peers.dat has been
2283 : : // deleted.
2284 : 0 : seeds_right_now = seeds.size();
2285 : : }
2286 : :
2287 : : // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2288 [ # # ]: 0 : if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2289 : : // goal: only query DNS seed if address need is acute
2290 : : // * If we have a reasonable number of peers in addrman, spend
2291 : : // some time trying them first. This improves user privacy by
2292 : : // creating fewer identifying DNS requests, reduces trust by
2293 : : // giving seeds less influence on the network topology, and
2294 : : // reduces traffic to the seeds.
2295 : : // * When querying DNS seeds query a few at once, this ensures
2296 : : // that we don't give DNS seeds the ability to eclipse nodes
2297 : : // that query them.
2298 : : // * If we continue having problems, eventually query all the
2299 : : // DNS seeds, and if that fails too, also try the fixed seeds.
2300 : : // (done in ThreadOpenConnections)
2301 : 0 : int found = 0;
2302 [ # # # # ]: 0 : const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2303 : :
2304 [ # # ]: 0 : for (const std::string& seed : seeds) {
2305 [ # # ]: 0 : if (seeds_right_now == 0) {
2306 : 0 : seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2307 : :
2308 [ # # # # ]: 0 : if (addrman.Size() > 0) {
2309 [ # # ]: 0 : LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2310 : 0 : std::chrono::seconds to_wait = seeds_wait_time;
2311 [ # # ]: 0 : while (to_wait.count() > 0) {
2312 : : // if sleeping for the MANY_PEERS interval, wake up
2313 : : // early to see if we have enough peers and can stop
2314 : : // this thread entirely freeing up its resources
2315 : 0 : std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2316 [ # # # # ]: 0 : if (!interruptNet.sleep_for(w)) return;
2317 [ # # ]: 0 : to_wait -= w;
2318 : :
2319 [ # # # # ]: 0 : if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2320 [ # # ]: 0 : if (found > 0) {
2321 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2322 [ # # ]: 0 : LogPrintf("P2P peers available. Finished DNS seeding.\n");
2323 : : } else {
2324 [ # # ]: 0 : LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2325 : : }
2326 : 0 : return;
2327 : : }
2328 : : }
2329 : : }
2330 : : }
2331 : :
2332 [ # # # # ]: 0 : if (interruptNet) return;
2333 : :
2334 : : // hold off on querying seeds if P2P network deactivated
2335 [ # # ]: 0 : if (!fNetworkActive) {
2336 [ # # ]: 0 : LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2337 : 0 : do {
2338 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2339 [ # # ]: 0 : } while (!fNetworkActive);
2340 : : }
2341 : :
2342 [ # # ]: 0 : LogPrintf("Loading addresses from DNS seed %s\n", seed);
2343 : : // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2344 : : // for the base dns seed domain in chainparams
2345 [ # # # # ]: 0 : if (HaveNameProxy()) {
2346 [ # # ]: 0 : AddAddrFetch(seed);
2347 : : } else {
2348 : 0 : std::vector<CAddress> vAdd;
2349 : 0 : constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2350 [ # # ]: 0 : std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2351 [ # # ]: 0 : CNetAddr resolveSource;
2352 [ # # # # ]: 0 : if (!resolveSource.SetInternal(host)) {
2353 : 0 : continue;
2354 : : }
2355 : : // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2356 : : // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2357 : : // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2358 : : // returned.
2359 : 0 : unsigned int nMaxIPs = 32;
2360 [ # # # # ]: 0 : const auto addresses{LookupHost(host, nMaxIPs, true)};
2361 [ # # ]: 0 : if (!addresses.empty()) {
2362 [ # # ]: 0 : for (const CNetAddr& ip : addresses) {
2363 [ # # ]: 0 : CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2364 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2365 [ # # ]: 0 : vAdd.push_back(addr);
2366 : 0 : found++;
2367 : 0 : }
2368 [ # # ]: 0 : addrman.Add(vAdd, resolveSource);
2369 : : } else {
2370 : : // If the seed does not support a subdomain with our desired service bits,
2371 : : // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2372 : : // base dns seed domain in chainparams
2373 [ # # ]: 0 : AddAddrFetch(seed);
2374 : : }
2375 : 0 : }
2376 : 0 : --seeds_right_now;
2377 : : }
2378 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2379 : : } else {
2380 [ # # ]: 0 : LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2381 : : }
2382 : 0 : }
2383 : :
2384 : 0 : void CConnman::DumpAddresses()
2385 : : {
2386 : 0 : const auto start{SteadyClock::now()};
2387 : :
2388 : 0 : DumpPeerAddresses(::gArgs, addrman);
2389 : :
2390 [ # # ]: 0 : LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2391 : : addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2392 : 0 : }
2393 : :
2394 : 0 : void CConnman::ProcessAddrFetch()
2395 : : {
2396 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2397 [ # # ]: 0 : std::string strDest;
2398 : 0 : {
2399 [ # # ]: 0 : LOCK(m_addr_fetches_mutex);
2400 [ # # ]: 0 : if (m_addr_fetches.empty())
2401 [ # # ]: 0 : return;
2402 [ # # ]: 0 : strDest = m_addr_fetches.front();
2403 [ # # ]: 0 : m_addr_fetches.pop_front();
2404 : 0 : }
2405 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2406 : : // peer doesn't support it or immediately disconnects us for another reason.
2407 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2408 [ # # ]: 0 : CAddress addr;
2409 : 0 : CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2410 [ # # ]: 0 : if (grant) {
2411 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2412 : : }
2413 : 0 : }
2414 : :
2415 : 4096 : bool CConnman::GetTryNewOutboundPeer() const
2416 : : {
2417 : 4096 : return m_try_another_outbound_peer;
2418 : : }
2419 : :
2420 : 35487 : void CConnman::SetTryNewOutboundPeer(bool flag)
2421 : : {
2422 : 35487 : m_try_another_outbound_peer = flag;
2423 [ - + - - ]: 35487 : LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2424 : 35487 : }
2425 : :
2426 : 0 : void CConnman::StartExtraBlockRelayPeers()
2427 : : {
2428 [ # # ]: 0 : LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2429 : 0 : m_start_extra_block_relay_peers = true;
2430 : 0 : }
2431 : :
2432 : : // Return the number of outbound connections that are full relay (not blocks only)
2433 : 0 : int CConnman::GetFullOutboundConnCount() const
2434 : : {
2435 : 0 : int nRelevant = 0;
2436 : 0 : {
2437 : 0 : LOCK(m_nodes_mutex);
2438 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2439 [ # # # # ]: 0 : if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2440 : : }
2441 : 0 : }
2442 : 0 : return nRelevant;
2443 : : }
2444 : :
2445 : : // Return the number of peers we have over our outbound connection limit
2446 : : // Exclude peers that are marked for disconnect, or are going to be
2447 : : // disconnected soon (eg ADDR_FETCH and FEELER)
2448 : : // Also exclude peers that haven't finished initial connection handshake yet
2449 : : // (so that we don't decide we're over our desired connection limit, and then
2450 : : // evict some peer that has finished the handshake)
2451 : 4096 : int CConnman::GetExtraFullOutboundCount() const
2452 : : {
2453 : 4096 : int full_outbound_peers = 0;
2454 : 4096 : {
2455 : 4096 : LOCK(m_nodes_mutex);
2456 [ + + ]: 38959 : for (const CNode* pnode : m_nodes) {
2457 [ - + - - : 34863 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
- - ]
2458 : 0 : ++full_outbound_peers;
2459 : : }
2460 : : }
2461 : 4096 : }
2462 [ + - ]: 4096 : return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2463 : : }
2464 : :
2465 : 0 : int CConnman::GetExtraBlockRelayCount() const
2466 : : {
2467 : 0 : int block_relay_peers = 0;
2468 : 0 : {
2469 : 0 : LOCK(m_nodes_mutex);
2470 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2471 [ # # # # : 0 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
# # ]
2472 : 0 : ++block_relay_peers;
2473 : : }
2474 : : }
2475 : 0 : }
2476 [ # # ]: 0 : return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2477 : : }
2478 : :
2479 : 0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2480 : : {
2481 : 0 : std::unordered_set<Network> networks{};
2482 [ # # ]: 0 : for (int n = 0; n < NET_MAX; n++) {
2483 : 0 : enum Network net = (enum Network)n;
2484 [ # # ]: 0 : if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2485 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
# # # # ]
2486 [ # # ]: 0 : networks.insert(net);
2487 : : }
2488 : : }
2489 : 0 : return networks;
2490 : 0 : }
2491 : :
2492 : 0 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2493 : : {
2494 : 0 : AssertLockHeld(m_nodes_mutex);
2495 : 0 : return m_network_conn_counts[net] > 1;
2496 : : }
2497 : :
2498 : 0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2499 : : {
2500 : 0 : std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2501 : 0 : std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2502 : :
2503 : 0 : LOCK(m_nodes_mutex);
2504 [ # # ]: 0 : for (const auto net : nets) {
2505 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
# # # # #
# ]
2506 : 0 : network = net;
2507 : 0 : return true;
2508 : : }
2509 : : }
2510 : :
2511 : : return false;
2512 : 0 : }
2513 : :
2514 : 0 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, Span<const std::string> seed_nodes)
2515 : : {
2516 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2517 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2518 : 0 : FastRandomContext rng;
2519 : : // Connect to specific addresses
2520 [ # # ]: 0 : if (!connect.empty())
2521 : : {
2522 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2523 : : // peer doesn't support it or immediately disconnects us for another reason.
2524 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2525 : 0 : for (int64_t nLoop = 0;; nLoop++)
2526 : : {
2527 [ # # ]: 0 : for (const std::string& strAddr : connect)
2528 : : {
2529 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2530 [ # # ]: 0 : OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2531 [ # # # # ]: 0 : for (int i = 0; i < 10 && i < nLoop; i++)
2532 : : {
2533 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2534 : 0 : return;
2535 : : }
2536 : 0 : }
2537 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2538 : : return;
2539 [ # # ]: 0 : PerformReconnections();
2540 : 0 : }
2541 : : }
2542 : :
2543 : : // Initiate network connections
2544 : 0 : auto start = GetTime<std::chrono::microseconds>();
2545 : :
2546 : : // Minimum time before next feeler connection (in microseconds).
2547 : 0 : auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2548 : 0 : auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2549 [ # # ]: 0 : auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2550 [ # # # # ]: 0 : const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2551 [ # # # # ]: 0 : bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2552 [ # # # # ]: 0 : const bool use_seednodes{gArgs.IsArgSet("-seednode")};
2553 : :
2554 : 0 : auto seed_node_timer = NodeClock::now();
2555 [ # # # # : 0 : bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
# # ]
2556 : 0 : constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2557 : :
2558 [ # # ]: 0 : if (!add_fixed_seeds) {
2559 [ # # ]: 0 : LogPrintf("Fixed seeds are disabled\n");
2560 : : }
2561 : :
2562 [ # # # # ]: 0 : while (!interruptNet)
2563 : : {
2564 [ # # ]: 0 : if (add_addr_fetch) {
2565 : 0 : add_addr_fetch = false;
2566 : 0 : const auto& seed{SpanPopBack(seed_nodes)};
2567 [ # # ]: 0 : AddAddrFetch(seed);
2568 : :
2569 [ # # # # ]: 0 : if (addrman.Size() == 0) {
2570 [ # # ]: 0 : LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2571 : : } else {
2572 [ # # ]: 0 : LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2573 : : }
2574 : : }
2575 : :
2576 [ # # ]: 0 : ProcessAddrFetch();
2577 : :
2578 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2579 : : return;
2580 : :
2581 [ # # ]: 0 : PerformReconnections();
2582 : :
2583 : 0 : CSemaphoreGrant grant(*semOutbound);
2584 [ # # # # ]: 0 : if (interruptNet)
2585 : : return;
2586 : :
2587 [ # # ]: 0 : const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2588 [ # # # # ]: 0 : if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2589 : : // When the node starts with an empty peers.dat, there are a few other sources of peers before
2590 : : // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2591 : : // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2592 : : // 60 seconds for any of those sources to populate addrman.
2593 : 0 : bool add_fixed_seeds_now = false;
2594 : : // It is cheapest to check if enough time has passed first.
2595 [ # # ]: 0 : if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2596 : 0 : add_fixed_seeds_now = true;
2597 [ # # ]: 0 : LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2598 : : }
2599 : :
2600 : : // Perform cheap checks before locking a mutex.
2601 [ # # ]: 0 : else if (!dnsseed && !use_seednodes) {
2602 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
2603 [ # # ]: 0 : if (m_added_node_params.empty()) {
2604 : 0 : add_fixed_seeds_now = true;
2605 [ # # ]: 0 : LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2606 : : }
2607 : 0 : }
2608 : :
2609 [ # # ]: 0 : if (add_fixed_seeds_now) {
2610 [ # # ]: 0 : std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2611 : : // We will not make outgoing connections to peers that are unreachable
2612 : : // (e.g. because of -onlynet configuration).
2613 : : // Therefore, we do not add them to addrman in the first place.
2614 : : // In case previously unreachable networks become reachable
2615 : : // (e.g. in case of -onlynet changes by the user), fixed seeds will
2616 : : // be loaded only for networks for which we have no addresses.
2617 [ # # ]: 0 : seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2618 : 0 : [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2619 [ # # ]: 0 : seed_addrs.end());
2620 [ # # ]: 0 : CNetAddr local;
2621 [ # # # # ]: 0 : local.SetInternal("fixedseeds");
2622 [ # # ]: 0 : addrman.Add(seed_addrs, local);
2623 : 0 : add_fixed_seeds = false;
2624 [ # # ]: 0 : LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2625 : 0 : }
2626 : : }
2627 : :
2628 : : //
2629 : : // Choose an address to connect to based on most recently seen
2630 : : //
2631 [ # # ]: 0 : CAddress addrConnect;
2632 : :
2633 : : // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2634 : 0 : int nOutboundFullRelay = 0;
2635 : 0 : int nOutboundBlockRelay = 0;
2636 : 0 : int outbound_privacy_network_peers = 0;
2637 [ # # ]: 0 : std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2638 : :
2639 : 0 : {
2640 [ # # ]: 0 : LOCK(m_nodes_mutex);
2641 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2642 [ # # ]: 0 : if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2643 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2644 : :
2645 : : // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2646 [ # # ]: 0 : switch (pnode->m_conn_type) {
2647 : : // We currently don't take inbound connections into account. Since they are
2648 : : // free to make, an attacker could make them to prevent us from connecting to
2649 : : // certain peers.
2650 : : case ConnectionType::INBOUND:
2651 : : // Short-lived outbound connections should not affect how we select outbound
2652 : : // peers from addrman.
2653 : : case ConnectionType::ADDR_FETCH:
2654 : : case ConnectionType::FEELER:
2655 : : break;
2656 : 0 : case ConnectionType::MANUAL:
2657 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
2658 : 0 : case ConnectionType::BLOCK_RELAY:
2659 : 0 : const CAddress address{pnode->addr};
2660 [ # # # # : 0 : if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
# # ]
2661 : : // Since our addrman-groups for these networks are
2662 : : // random, without relation to the route we
2663 : : // take to connect to these peers or to the
2664 : : // difficulty in obtaining addresses with diverse
2665 : : // groups, we don't worry about diversity with
2666 : : // respect to our addrman groups when connecting to
2667 : : // these networks.
2668 : 0 : ++outbound_privacy_network_peers;
2669 : : } else {
2670 [ # # # # ]: 0 : outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2671 : : }
2672 : : } // no default case, so the compiler can warn about missing cases
2673 : : }
2674 : 0 : }
2675 : :
2676 [ # # # # ]: 0 : if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2677 [ # # ]: 0 : if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2678 : 0 : seed_node_timer = NodeClock::now();
2679 : 0 : add_addr_fetch = true;
2680 : : }
2681 : : }
2682 : :
2683 : 0 : ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2684 : 0 : auto now = GetTime<std::chrono::microseconds>();
2685 : 0 : bool anchor = false;
2686 : 0 : bool fFeeler = false;
2687 : 0 : std::optional<Network> preferred_net;
2688 : :
2689 : : // Determine what type of connection to open. Opening
2690 : : // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2691 : : // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2692 : : // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2693 : : // until we hit our block-relay-only peer limit.
2694 : : // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2695 : : // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2696 : : // these conditions are met, check to see if it's time to try an extra
2697 : : // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2698 : : // timer to decide if we should open a FEELER.
2699 : :
2700 [ # # # # ]: 0 : if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2701 : : conn_type = ConnectionType::BLOCK_RELAY;
2702 : : anchor = true;
2703 [ # # ]: 0 : } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2704 : : // OUTBOUND_FULL_RELAY
2705 [ # # ]: 0 : } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2706 : : conn_type = ConnectionType::BLOCK_RELAY;
2707 [ # # # # ]: 0 : } else if (GetTryNewOutboundPeer()) {
2708 : : // OUTBOUND_FULL_RELAY
2709 [ # # # # ]: 0 : } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2710 : : // Periodically connect to a peer (using regular outbound selection
2711 : : // methodology from addrman) and stay connected long enough to sync
2712 : : // headers, but not much else.
2713 : : //
2714 : : // Then disconnect the peer, if we haven't learned anything new.
2715 : : //
2716 : : // The idea is to make eclipse attacks very difficult to pull off,
2717 : : // because every few minutes we're finding a new peer to learn headers
2718 : : // from.
2719 : : //
2720 : : // This is similar to the logic for trying extra outbound (full-relay)
2721 : : // peers, except:
2722 : : // - we do this all the time on an exponential timer, rather than just when
2723 : : // our tip is stale
2724 : : // - we potentially disconnect our next-youngest block-relay-only peer, if our
2725 : : // newest block-relay-only peer delivers a block more recently.
2726 : : // See the eviction logic in net_processing.cpp.
2727 : : //
2728 : : // Because we can promote these connections to block-relay-only
2729 : : // connections, they do not get their own ConnectionType enum
2730 : : // (similar to how we deal with extra outbound peers).
2731 : 0 : next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2732 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2733 [ # # ]: 0 : } else if (now > next_feeler) {
2734 : 0 : next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2735 : 0 : conn_type = ConnectionType::FEELER;
2736 : 0 : fFeeler = true;
2737 [ # # ]: 0 : } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2738 [ # # ]: 0 : m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2739 [ # # # # : 0 : now > next_extra_network_peer &&
# # ]
2740 [ # # ]: 0 : MaybePickPreferredNetwork(preferred_net)) {
2741 : : // Full outbound connection management: Attempt to get at least one
2742 : : // outbound peer from each reachable network by making extra connections
2743 : : // and then protecting "only" peers from a network during outbound eviction.
2744 : : // This is not attempted if the user changed -maxconnections to a value
2745 : : // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2746 : : // to prevent interactions with otherwise protected outbound peers.
2747 : 0 : next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2748 : : } else {
2749 : : // skip to next iteration of while loop
2750 : 0 : continue;
2751 : : }
2752 : :
2753 [ # # ]: 0 : addrman.ResolveCollisions();
2754 : :
2755 : 0 : const auto current_time{NodeClock::now()};
2756 : 0 : int nTries = 0;
2757 [ # # ]: 0 : const auto reachable_nets{g_reachable_nets.All()};
2758 : :
2759 [ # # # # ]: 0 : while (!interruptNet)
2760 : : {
2761 [ # # # # ]: 0 : if (anchor && !m_anchors.empty()) {
2762 : 0 : const CAddress addr = m_anchors.back();
2763 : 0 : m_anchors.pop_back();
2764 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
# # # # #
# # # #
# ]
2765 [ # # # # : 0 : !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
# # ]
2766 [ # # ]: 0 : outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2767 : 0 : addrConnect = addr;
2768 [ # # # # : 0 : LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2769 : 0 : break;
2770 : 0 : }
2771 : :
2772 : : // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2773 : : // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2774 : : // already-connected network ranges, ...) before trying new addrman addresses.
2775 : 0 : nTries++;
2776 [ # # ]: 0 : if (nTries > 100)
2777 : : break;
2778 : :
2779 [ # # ]: 0 : CAddress addr;
2780 : 0 : NodeSeconds addr_last_try{0s};
2781 : :
2782 [ # # ]: 0 : if (fFeeler) {
2783 : : // First, try to get a tried table collision address. This returns
2784 : : // an empty (invalid) address if there are no collisions to try.
2785 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2786 : :
2787 [ # # # # ]: 0 : if (!addr.IsValid()) {
2788 : : // No tried table collisions. Select a new table address
2789 : : // for our feeler.
2790 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2791 [ # # # # ]: 0 : } else if (AlreadyConnectedToAddress(addr)) {
2792 : : // If test-before-evict logic would have us connect to a
2793 : : // peer that we're already connected to, just mark that
2794 : : // address as Good(). We won't be able to initiate the
2795 : : // connection anyway, so this avoids inadvertently evicting
2796 : : // a currently-connected peer.
2797 [ # # ]: 0 : addrman.Good(addr);
2798 : : // Select a new table address for our feeler instead.
2799 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2800 : : }
2801 : : } else {
2802 : : // Not a feeler
2803 : : // If preferred_net has a value set, pick an extra outbound
2804 : : // peer from that network. The eviction logic in net_processing
2805 : : // ensures that a peer from another network will be evicted.
2806 [ # # ]: 0 : std::tie(addr, addr_last_try) = preferred_net.has_value()
2807 [ # # # # : 0 : ? addrman.Select(false, {*preferred_net})
# # # # #
# ]
2808 [ # # ]: 0 : : addrman.Select(false, reachable_nets);
2809 : : }
2810 : :
2811 : : // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2812 [ # # # # : 0 : if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
# # # # ]
2813 : 0 : continue;
2814 : : }
2815 : :
2816 : : // if we selected an invalid or local address, restart
2817 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr)) {
# # # # ]
2818 : : break;
2819 : : }
2820 : :
2821 [ # # # # ]: 0 : if (!g_reachable_nets.Contains(addr)) {
2822 : 0 : continue;
2823 : : }
2824 : :
2825 : : // only consider very recently tried nodes after 30 failed attempts
2826 [ # # # # ]: 0 : if (current_time - addr_last_try < 10min && nTries < 30) {
2827 : 0 : continue;
2828 : : }
2829 : :
2830 : : // for non-feelers, require all the services we'll want,
2831 : : // for feelers, only require they be a full node (only because most
2832 : : // SPV clients don't have a good address DB available)
2833 [ # # # # : 0 : if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
# # ]
2834 : 0 : continue;
2835 [ # # # # ]: 0 : } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2836 : 0 : continue;
2837 : : }
2838 : :
2839 : : // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2840 [ # # # # : 0 : if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
# # # # #
# # # ]
2841 : 0 : continue;
2842 : : }
2843 : :
2844 : : // Do not make automatic outbound connections to addnode peers, to
2845 : : // not use our limited outbound slots for them and to ensure
2846 : : // addnode connections benefit from their intended protections.
2847 [ # # # # ]: 0 : if (AddedNodesContain(addr)) {
2848 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
# # # # #
# # # # #
# # # # #
# # # # #
# # ]
2849 : : preferred_net.has_value() ? "network-specific " : "",
2850 : : ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2851 : : fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2852 : 0 : continue;
2853 : : }
2854 : :
2855 : 0 : addrConnect = addr;
2856 : : break;
2857 : 0 : }
2858 : :
2859 [ # # # # ]: 0 : if (addrConnect.IsValid()) {
2860 [ # # ]: 0 : if (fFeeler) {
2861 : : // Add small amount of random noise before connection to avoid synchronization.
2862 [ # # # # ]: 0 : if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2863 : 0 : return;
2864 : : }
2865 [ # # # # : 0 : LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2866 : : }
2867 : :
2868 [ # # # # : 0 : if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
# # # # #
# # # #
# ]
2869 : :
2870 : : // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2871 : : // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2872 : : // Don't record addrman failure attempts when node is offline. This can be identified since all local
2873 : : // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2874 [ # # ]: 0 : const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2875 : : // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2876 [ # # ]: 0 : const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2877 [ # # ]: 0 : OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2878 : : }
2879 : 0 : }
2880 : 0 : }
2881 : :
2882 : 0 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2883 : : {
2884 : 0 : std::vector<CAddress> ret;
2885 [ # # ]: 0 : LOCK(m_nodes_mutex);
2886 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2887 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) {
2888 [ # # ]: 0 : ret.push_back(pnode->addr);
2889 : : }
2890 : : }
2891 : :
2892 [ # # ]: 0 : return ret;
2893 : 0 : }
2894 : :
2895 : 4099 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2896 : : {
2897 : 4099 : std::vector<AddedNodeInfo> ret;
2898 : :
2899 [ + - ]: 4099 : std::list<AddedNodeParams> lAddresses(0);
2900 : 4099 : {
2901 [ + - ]: 4099 : LOCK(m_added_nodes_mutex);
2902 [ + - ]: 4099 : ret.reserve(m_added_node_params.size());
2903 [ + - ]: 4099 : std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2904 : 0 : }
2905 : :
2906 : :
2907 : : // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2908 [ + - ]: 4099 : std::map<CService, bool> mapConnected;
2909 : 4099 : std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2910 : 4099 : {
2911 [ + - ]: 4099 : LOCK(m_nodes_mutex);
2912 [ + + ]: 38962 : for (const CNode* pnode : m_nodes) {
2913 [ + - + + ]: 34863 : if (pnode->addr.IsValid()) {
2914 [ + - ]: 29516 : mapConnected[pnode->addr] = pnode->IsInboundConn();
2915 : : }
2916 [ + - ]: 34863 : std::string addrName{pnode->m_addr_name};
2917 [ + - ]: 34863 : if (!addrName.empty()) {
2918 [ + - ]: 34863 : mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2919 : : }
2920 : 34863 : }
2921 : 0 : }
2922 : :
2923 [ + + ]: 33119 : for (const auto& addr : lAddresses) {
2924 [ + - + - : 58040 : CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
+ - + - ]
2925 [ + - + - ]: 29020 : AddedNodeInfo addedNode{addr, CService(), false, false};
2926 [ + - + + ]: 29020 : if (service.IsValid()) {
2927 : : // strAddNode is an IP:port
2928 [ + - ]: 1343 : auto it = mapConnected.find(service);
2929 [ + + ]: 1343 : if (it != mapConnected.end()) {
2930 [ + + ]: 18 : if (!include_connected) {
2931 : 11 : continue;
2932 : : }
2933 : 7 : addedNode.resolvedAddress = service;
2934 : 7 : addedNode.fConnected = true;
2935 : 7 : addedNode.fInbound = it->second;
2936 : : }
2937 : : } else {
2938 : : // strAddNode is a name
2939 : 27677 : auto it = mapConnectedByName.find(addr.m_added_node);
2940 [ + + ]: 27677 : if (it != mapConnectedByName.end()) {
2941 [ + + ]: 533 : if (!include_connected) {
2942 : 271 : continue;
2943 : : }
2944 : 262 : addedNode.resolvedAddress = it->second.second;
2945 : 262 : addedNode.fConnected = true;
2946 : 262 : addedNode.fInbound = it->second.first;
2947 : : }
2948 : : }
2949 [ + - ]: 28738 : ret.emplace_back(std::move(addedNode));
2950 : 29020 : }
2951 : :
2952 : 4099 : return ret;
2953 : 4099 : }
2954 : :
2955 : 0 : void CConnman::ThreadOpenAddedConnections()
2956 : : {
2957 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2958 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2959 : 0 : while (true)
2960 : : {
2961 : 0 : CSemaphoreGrant grant(*semAddnode);
2962 [ # # ]: 0 : std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2963 : 0 : bool tried = false;
2964 [ # # ]: 0 : for (const AddedNodeInfo& info : vInfo) {
2965 [ # # ]: 0 : if (!grant) {
2966 : : // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2967 : : // the addednodeinfo state might change.
2968 : : break;
2969 : : }
2970 : 0 : tried = true;
2971 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2972 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2973 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2974 : 0 : grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2975 : 0 : }
2976 : : // See if any reconnections are desired.
2977 [ # # ]: 0 : PerformReconnections();
2978 : : // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2979 [ # # # # : 0 : if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
# # ]
2980 : : return;
2981 : 0 : }
2982 : : }
2983 : :
2984 : : // if successful, this moves the passed grant to the constructed node
2985 : 0 : void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2986 : : {
2987 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2988 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
2989 : :
2990 : : //
2991 : : // Initiate outbound network connection
2992 : : //
2993 [ # # ]: 0 : if (interruptNet) {
2994 : : return;
2995 : : }
2996 [ # # ]: 0 : if (!fNetworkActive) {
2997 : : return;
2998 : : }
2999 [ # # ]: 0 : if (!pszDest) {
3000 [ # # # # : 0 : bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
# # ]
3001 [ # # # # : 0 : if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
# # ]
3002 : 0 : return;
3003 : : }
3004 [ # # # # ]: 0 : } else if (FindNode(std::string(pszDest)))
3005 : : return;
3006 : :
3007 [ # # ]: 0 : CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3008 : :
3009 [ # # ]: 0 : if (!pnode)
3010 : : return;
3011 : 0 : pnode->grantOutbound = std::move(grant_outbound);
3012 : :
3013 : 0 : m_msgproc->InitializeNode(*pnode, m_local_services);
3014 : 0 : {
3015 : 0 : LOCK(m_nodes_mutex);
3016 [ # # ]: 0 : m_nodes.push_back(pnode);
3017 : :
3018 : : // update connection count by network
3019 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3020 : 0 : }
3021 : :
3022 : : TRACEPOINT(net, outbound_connection,
3023 : : pnode->GetId(),
3024 : : pnode->m_addr_name.c_str(),
3025 : : pnode->ConnectionTypeAsString().c_str(),
3026 : : pnode->ConnectedThroughNetwork(),
3027 : 0 : GetNodeCount(ConnectionDirection::Out));
3028 : : }
3029 : :
3030 : : Mutex NetEventsInterface::g_msgproc_mutex;
3031 : :
3032 : 0 : void CConnman::ThreadMessageHandler()
3033 : : {
3034 : 0 : LOCK(NetEventsInterface::g_msgproc_mutex);
3035 : :
3036 [ # # ]: 0 : while (!flagInterruptMsgProc)
3037 : : {
3038 : 0 : bool fMoreWork = false;
3039 : :
3040 : 0 : {
3041 : : // Randomize the order in which we process messages from/to our peers.
3042 : : // This prevents attacks in which an attacker exploits having multiple
3043 : : // consecutive connections in the m_nodes list.
3044 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/true};
3045 : :
3046 [ # # ]: 0 : for (CNode* pnode : snap.Nodes()) {
3047 [ # # ]: 0 : if (pnode->fDisconnect)
3048 : 0 : continue;
3049 : :
3050 : : // Receive messages
3051 [ # # ]: 0 : bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3052 [ # # # # ]: 0 : fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3053 [ # # ]: 0 : if (flagInterruptMsgProc)
3054 : : return;
3055 : : // Send messages
3056 [ # # ]: 0 : m_msgproc->SendMessages(pnode);
3057 : :
3058 [ # # ]: 0 : if (flagInterruptMsgProc)
3059 : : return;
3060 : : }
3061 [ # # ]: 0 : }
3062 : :
3063 [ # # ]: 0 : WAIT_LOCK(mutexMsgProc, lock);
3064 [ # # ]: 0 : if (!fMoreWork) {
3065 [ # # # # ]: 0 : condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3066 : : }
3067 [ # # ]: 0 : fMsgProcWake = false;
3068 : 0 : }
3069 : 0 : }
3070 : :
3071 : 0 : void CConnman::ThreadI2PAcceptIncoming()
3072 : : {
3073 : 0 : static constexpr auto err_wait_begin = 1s;
3074 : 0 : static constexpr auto err_wait_cap = 5min;
3075 : 0 : auto err_wait = err_wait_begin;
3076 : :
3077 : 0 : bool advertising_listen_addr = false;
3078 : 0 : i2p::Connection conn;
3079 : :
3080 : 0 : auto SleepOnFailure = [&]() {
3081 : 0 : interruptNet.sleep_for(err_wait);
3082 [ # # ]: 0 : if (err_wait < err_wait_cap) {
3083 : 0 : err_wait += 1s;
3084 : : }
3085 : 0 : };
3086 : :
3087 [ # # # # ]: 0 : while (!interruptNet) {
3088 : :
3089 [ # # # # ]: 0 : if (!m_i2p_sam_session->Listen(conn)) {
3090 [ # # # # : 0 : if (advertising_listen_addr && conn.me.IsValid()) {
# # ]
3091 [ # # ]: 0 : RemoveLocal(conn.me);
3092 : : advertising_listen_addr = false;
3093 : : }
3094 [ # # ]: 0 : SleepOnFailure();
3095 : 0 : continue;
3096 : : }
3097 : :
3098 [ # # ]: 0 : if (!advertising_listen_addr) {
3099 [ # # ]: 0 : AddLocal(conn.me, LOCAL_MANUAL);
3100 : : advertising_listen_addr = true;
3101 : : }
3102 : :
3103 [ # # # # ]: 0 : if (!m_i2p_sam_session->Accept(conn)) {
3104 [ # # ]: 0 : SleepOnFailure();
3105 : 0 : continue;
3106 : : }
3107 : :
3108 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
3109 : 0 : CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
3110 : :
3111 : 0 : err_wait = err_wait_begin;
3112 : : }
3113 : 0 : }
3114 : :
3115 : 0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3116 : : {
3117 : 0 : int nOne = 1;
3118 : :
3119 : : // Create socket for listening for incoming connections
3120 : 0 : struct sockaddr_storage sockaddr;
3121 : 0 : socklen_t len = sizeof(sockaddr);
3122 [ # # ]: 0 : if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3123 : : {
3124 [ # # # # ]: 0 : strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3125 [ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3126 : 0 : return false;
3127 : : }
3128 : :
3129 : 0 : std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3130 [ # # ]: 0 : if (!sock) {
3131 [ # # # # : 0 : strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
# # ]
3132 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3133 : 0 : return false;
3134 : : }
3135 : :
3136 : : // Allow binding if the port is still in TIME_WAIT state after
3137 : : // the program was closed and restarted.
3138 [ # # # # ]: 0 : if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3139 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3140 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3141 : : }
3142 : :
3143 : : // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3144 : : // and enable it by default or not. Try to enable it, if possible.
3145 [ # # ]: 0 : if (addrBind.IsIPv6()) {
3146 : : #ifdef IPV6_V6ONLY
3147 [ # # # # ]: 0 : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3148 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3149 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3150 : : }
3151 : : #endif
3152 : : #ifdef WIN32
3153 : : int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3154 : : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3155 : : strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3156 : : LogPrintf("%s\n", strError.original);
3157 : : }
3158 : : #endif
3159 : : }
3160 : :
3161 [ # # # # ]: 0 : if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3162 : 0 : int nErr = WSAGetLastError();
3163 [ # # ]: 0 : if (nErr == WSAEADDRINUSE)
3164 [ # # # # ]: 0 : strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3165 : : else
3166 [ # # # # : 0 : strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
# # ]
3167 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3168 : 0 : return false;
3169 : : }
3170 [ # # # # ]: 0 : LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3171 : :
3172 : : // Listen for incoming connections
3173 [ # # # # ]: 0 : if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3174 : : {
3175 [ # # # # ]: 0 : strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3176 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3177 : 0 : return false;
3178 : : }
3179 : :
3180 [ # # ]: 0 : vhListenSocket.emplace_back(std::move(sock), permissions);
3181 : : return true;
3182 : 0 : }
3183 : :
3184 : 0 : void Discover()
3185 : : {
3186 [ # # ]: 0 : if (!fDiscover)
3187 : : return;
3188 : :
3189 [ # # ]: 0 : for (const CNetAddr &addr: GetLocalAddresses()) {
3190 [ # # # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3191 [ # # # # ]: 0 : LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3192 : 0 : }
3193 : : }
3194 : :
3195 : 12232 : void CConnman::SetNetworkActive(bool active)
3196 : : {
3197 : 12232 : LogPrintf("%s: %s\n", __func__, active);
3198 : :
3199 [ + + ]: 12232 : if (fNetworkActive == active) {
3200 : : return;
3201 : : }
3202 : :
3203 [ - + ]: 8732 : fNetworkActive = active;
3204 : :
3205 [ - + ]: 8732 : if (m_client_interface) {
3206 : 0 : m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3207 : : }
3208 : : }
3209 : :
3210 : 4120 : CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3211 : 4120 : const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3212 : 4120 : : addrman(addrman_in)
3213 [ + - ]: 4120 : , m_netgroupman{netgroupman}
3214 : 4120 : , nSeed0(nSeed0In)
3215 : 4120 : , nSeed1(nSeed1In)
3216 [ + - + - : 4120 : , m_params(params)
+ - + - ]
3217 : : {
3218 [ + - ]: 4120 : SetTryNewOutboundPeer(false);
3219 : :
3220 : 4120 : Options connOptions;
3221 [ + - ]: 4120 : Init(connOptions);
3222 [ + - ]: 4120 : SetNetworkActive(network_active);
3223 : 4120 : }
3224 : :
3225 : 0 : NodeId CConnman::GetNewNodeId()
3226 : : {
3227 : 0 : return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3228 : : }
3229 : :
3230 : 27779 : uint16_t CConnman::GetDefaultPort(Network net) const
3231 : : {
3232 [ + + ]: 27779 : return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3233 : : }
3234 : :
3235 : 1499961 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3236 : : {
3237 : 1499961 : CNetAddr a;
3238 [ + - + + : 1499961 : return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
+ - + - ]
3239 : 1499961 : }
3240 : :
3241 : 0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3242 : : {
3243 : 0 : const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3244 : :
3245 [ # # ]: 0 : bilingual_str strError;
3246 [ # # # # ]: 0 : if (!BindListenPort(addr, strError, permissions)) {
3247 [ # # # # ]: 0 : if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3248 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3249 : : }
3250 : 0 : return false;
3251 : : }
3252 : :
3253 [ # # # # : 0 : if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
# # # # #
# ]
3254 [ # # ]: 0 : AddLocal(addr, LOCAL_BIND);
3255 : : }
3256 : :
3257 : : return true;
3258 : 0 : }
3259 : :
3260 : 0 : bool CConnman::InitBinds(const Options& options)
3261 : : {
3262 [ # # ]: 0 : for (const auto& addrBind : options.vBinds) {
3263 [ # # ]: 0 : if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3264 : : return false;
3265 : : }
3266 : : }
3267 [ # # ]: 0 : for (const auto& addrBind : options.vWhiteBinds) {
3268 [ # # ]: 0 : if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3269 : : return false;
3270 : : }
3271 : : }
3272 [ # # ]: 0 : for (const auto& addr_bind : options.onion_binds) {
3273 [ # # ]: 0 : if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3274 : : return false;
3275 : : }
3276 : : }
3277 [ # # ]: 0 : if (options.bind_on_any) {
3278 : : // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3279 : : // may not have IPv6 support and the user did not explicitly ask us to
3280 : : // bind on that.
3281 : 0 : const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3282 [ # # ]: 0 : Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3283 : :
3284 : 0 : struct in_addr inaddr_any;
3285 : 0 : inaddr_any.s_addr = htonl(INADDR_ANY);
3286 [ # # # # ]: 0 : const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3287 [ # # # # ]: 0 : if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3288 : 0 : return false;
3289 : : }
3290 : 0 : }
3291 : : return true;
3292 : : }
3293 : :
3294 : 0 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3295 : : {
3296 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3297 : 0 : Init(connOptions);
3298 : :
3299 [ # # # # ]: 0 : if (fListen && !InitBinds(connOptions)) {
3300 [ # # ]: 0 : if (m_client_interface) {
3301 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3302 [ # # ]: 0 : _("Failed to listen on any port. Use -listen=0 if you want this."),
3303 : : "", CClientUIInterface::MSG_ERROR);
3304 : : }
3305 : 0 : return false;
3306 : : }
3307 : :
3308 : 0 : Proxy i2p_sam;
3309 [ # # # # : 0 : if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
# # ]
3310 [ # # # # ]: 0 : m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3311 [ # # ]: 0 : i2p_sam, &interruptNet);
3312 : : }
3313 : :
3314 : : // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3315 [ # # ]: 0 : std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3316 [ # # ]: 0 : if (!seed_nodes.empty()) {
3317 : 0 : std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3318 : : }
3319 : :
3320 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3321 : : // Load addresses from anchors.dat
3322 [ # # # # : 0 : m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
# # ]
3323 [ # # ]: 0 : if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3324 [ # # ]: 0 : m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3325 : : }
3326 [ # # ]: 0 : LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3327 : : }
3328 : :
3329 [ # # ]: 0 : if (m_client_interface) {
3330 [ # # # # ]: 0 : m_client_interface->InitMessage(_("Starting network threads…"));
3331 : : }
3332 : :
3333 : 0 : fAddressesInitialized = true;
3334 : :
3335 [ # # ]: 0 : if (semOutbound == nullptr) {
3336 : : // initialize semaphore
3337 [ # # # # ]: 0 : semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3338 : : }
3339 [ # # ]: 0 : if (semAddnode == nullptr) {
3340 : : // initialize semaphore
3341 [ # # ]: 0 : semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3342 : : }
3343 : :
3344 : : //
3345 : : // Start threads
3346 : : //
3347 [ # # ]: 0 : assert(m_msgproc);
3348 [ # # ]: 0 : interruptNet.reset();
3349 [ # # ]: 0 : flagInterruptMsgProc = false;
3350 : :
3351 : 0 : {
3352 [ # # ]: 0 : LOCK(mutexMsgProc);
3353 [ # # ]: 0 : fMsgProcWake = false;
3354 : 0 : }
3355 : :
3356 : : // Send and receive from sockets, accept connections
3357 [ # # ]: 0 : threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3358 : :
3359 [ # # # # : 0 : if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
# # ]
3360 [ # # ]: 0 : LogPrintf("DNS seeding disabled\n");
3361 : : else
3362 [ # # ]: 0 : threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3363 : :
3364 : : // Initiate manual connections
3365 [ # # ]: 0 : threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3366 : :
3367 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3368 [ # # ]: 0 : if (m_client_interface) {
3369 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3370 [ # # ]: 0 : _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3371 : : "", CClientUIInterface::MSG_ERROR);
3372 : : }
3373 : 0 : return false;
3374 : : }
3375 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3376 : 0 : threadOpenConnections = std::thread(
3377 [ # # ]: 0 : &util::TraceThread, "opencon",
3378 [ # # # # : 0 : [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
# # ]
3379 : : }
3380 : :
3381 : : // Process messages
3382 [ # # ]: 0 : threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3383 : :
3384 [ # # ]: 0 : if (m_i2p_sam_session) {
3385 : 0 : threadI2PAcceptIncoming =
3386 [ # # ]: 0 : std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3387 : : }
3388 : :
3389 : : // Dump network addresses
3390 [ # # ]: 0 : scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3391 : :
3392 : : // Run the ASMap Health check once and then schedule it to run every 24h.
3393 [ # # # # ]: 0 : if (m_netgroupman.UsingASMap()) {
3394 [ # # ]: 0 : ASMapHealthCheck();
3395 [ # # ]: 0 : scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3396 : : }
3397 : :
3398 : : return true;
3399 : 0 : }
3400 : :
3401 : : class CNetCleanup
3402 : : {
3403 : : public:
3404 : : CNetCleanup() = default;
3405 : :
3406 : 209 : ~CNetCleanup()
3407 : : {
3408 : : #ifdef WIN32
3409 : : // Shutdown Windows Sockets
3410 : : WSACleanup();
3411 : : #endif
3412 : 209 : }
3413 : : };
3414 : : static CNetCleanup instance_of_cnetcleanup;
3415 : :
3416 : 4120 : void CConnman::Interrupt()
3417 : : {
3418 : 4120 : {
3419 : 4120 : LOCK(mutexMsgProc);
3420 [ + - ]: 4120 : flagInterruptMsgProc = true;
3421 : 4120 : }
3422 : 4120 : condMsgProc.notify_all();
3423 : :
3424 : 4120 : interruptNet();
3425 : 4120 : g_socks5_interrupt();
3426 : :
3427 [ - + ]: 4120 : if (semOutbound) {
3428 [ # # ]: 0 : for (int i=0; i<m_max_automatic_outbound; i++) {
3429 : 0 : semOutbound->post();
3430 : : }
3431 : : }
3432 : :
3433 [ - + ]: 4120 : if (semAddnode) {
3434 [ # # ]: 0 : for (int i=0; i<m_max_addnode; i++) {
3435 : 0 : semAddnode->post();
3436 : : }
3437 : : }
3438 : 4120 : }
3439 : :
3440 : 4120 : void CConnman::StopThreads()
3441 : : {
3442 [ - + ]: 4120 : if (threadI2PAcceptIncoming.joinable()) {
3443 : 0 : threadI2PAcceptIncoming.join();
3444 : : }
3445 [ - + ]: 4120 : if (threadMessageHandler.joinable())
3446 : 0 : threadMessageHandler.join();
3447 [ - + ]: 4120 : if (threadOpenConnections.joinable())
3448 : 0 : threadOpenConnections.join();
3449 [ - + ]: 4120 : if (threadOpenAddedConnections.joinable())
3450 : 0 : threadOpenAddedConnections.join();
3451 [ - + ]: 4120 : if (threadDNSAddressSeed.joinable())
3452 : 0 : threadDNSAddressSeed.join();
3453 [ - + ]: 4120 : if (threadSocketHandler.joinable())
3454 : 0 : threadSocketHandler.join();
3455 : 4120 : }
3456 : :
3457 : 16245 : void CConnman::StopNodes()
3458 : : {
3459 [ - + ]: 16245 : if (fAddressesInitialized) {
3460 : 0 : DumpAddresses();
3461 : 0 : fAddressesInitialized = false;
3462 : :
3463 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3464 : : // Anchor connections are only dumped during clean shutdown.
3465 : 0 : std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3466 [ # # ]: 0 : if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3467 [ # # ]: 0 : anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3468 : : }
3469 [ # # # # : 0 : DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
# # ]
3470 : 0 : }
3471 : : }
3472 : :
3473 : : // Delete peer connections.
3474 : 16245 : std::vector<CNode*> nodes;
3475 [ + - + - ]: 32490 : WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3476 [ + + ]: 36498 : for (CNode* pnode : nodes) {
3477 [ + - - + : 20253 : LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
- - - - ]
3478 [ + - ]: 20253 : pnode->CloseSocketDisconnect();
3479 [ + - ]: 20253 : DeleteNode(pnode);
3480 : : }
3481 : :
3482 [ - + ]: 16245 : for (CNode* pnode : m_nodes_disconnected) {
3483 [ # # ]: 0 : DeleteNode(pnode);
3484 : : }
3485 : 16245 : m_nodes_disconnected.clear();
3486 : 16245 : vhListenSocket.clear();
3487 [ - + ]: 16245 : semOutbound.reset();
3488 [ - + ]: 16245 : semAddnode.reset();
3489 : 16245 : }
3490 : :
3491 : 20253 : void CConnman::DeleteNode(CNode* pnode)
3492 : : {
3493 [ - + ]: 20253 : assert(pnode);
3494 : 20253 : m_msgproc->FinalizeNode(*pnode);
3495 : 20253 : delete pnode;
3496 : 20253 : }
3497 : :
3498 : 4120 : CConnman::~CConnman()
3499 : : {
3500 : 4120 : Interrupt();
3501 : 4120 : Stop();
3502 : 4120 : }
3503 : :
3504 : 91126 : std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3505 : : {
3506 : 91126 : std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3507 [ - + ]: 91126 : if (m_banman) {
3508 [ # # ]: 0 : addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3509 [ # # # # ]: 0 : [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3510 [ # # ]: 0 : addresses.end());
3511 : : }
3512 : 91126 : return addresses;
3513 : 0 : }
3514 : :
3515 : 10338 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3516 : : {
3517 : 10338 : auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3518 [ + - ]: 10338 : uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3519 [ + - + - : 10338 : .Write(requestor.ConnectedThroughNetwork())
+ - ]
3520 [ + - + + ]: 10338 : .Write(local_socket_bytes)
3521 : : // For outbound connections, the port of the bound address is randomly
3522 : : // assigned by the OS and would therefore not be useful for seeding.
3523 [ + + + - : 10338 : .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
+ - ]
3524 [ + - ]: 10338 : .Finalize();
3525 : 10338 : const auto current_time = GetTime<std::chrono::microseconds>();
3526 [ + - ]: 10338 : auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3527 [ + + ]: 10338 : CachedAddrResponse& cache_entry = r.first->second;
3528 [ + + ]: 10338 : if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3529 [ + - ]: 1196 : cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3530 : : // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3531 : : // and the usefulness of ADDR responses to honest users.
3532 : : //
3533 : : // Longer cache lifetime makes it more difficult for an attacker to scrape
3534 : : // enough AddrMan data to maliciously infer something useful.
3535 : : // By the time an attacker scraped enough AddrMan records, most of
3536 : : // the records should be old enough to not leak topology info by
3537 : : // e.g. analyzing real-time changes in timestamps.
3538 : : //
3539 : : // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3540 : : // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3541 : : // most of it could be scraped (considering that timestamps are updated via
3542 : : // ADDR self-announcements and when nodes communicate).
3543 : : // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3544 : : // (because even several timestamps of the same handful of nodes may leak privacy).
3545 : : //
3546 : : // On the other hand, longer cache lifetime makes ADDR responses
3547 : : // outdated and less useful for an honest requestor, e.g. if most nodes
3548 : : // in the ADDR response are no longer active.
3549 : : //
3550 : : // However, the churn in the network is known to be rather low. Since we consider
3551 : : // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3552 : : // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3553 : : // in terms of the freshness of the response.
3554 : 1196 : cache_entry.m_cache_entry_expiration = current_time +
3555 : 1196 : 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3556 : : }
3557 [ + - ]: 10338 : return cache_entry.m_addrs_response_cache;
3558 : 10338 : }
3559 : :
3560 : 324865 : bool CConnman::AddNode(const AddedNodeParams& add)
3561 : : {
3562 [ + - + - ]: 324865 : const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3563 [ + - ]: 324865 : const bool resolved_is_valid{resolved.IsValid()};
3564 : :
3565 [ + - ]: 324865 : LOCK(m_added_nodes_mutex);
3566 [ + + ]: 23575953 : for (const auto& it : m_added_node_params) {
3567 [ + + + + : 25805140 : if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
+ - + - +
- + - + +
+ + + + -
- - - ]
3568 : : }
3569 : :
3570 [ + - ]: 62965 : m_added_node_params.push_back(add);
3571 : : return true;
3572 : 324865 : }
3573 : :
3574 : 131458 : bool CConnman::RemoveAddedNode(const std::string& strNode)
3575 : : {
3576 : 131458 : LOCK(m_added_nodes_mutex);
3577 [ + + ]: 3364822 : for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3578 [ + + ]: 3267309 : if (strNode == it->m_added_node) {
3579 : 33945 : m_added_node_params.erase(it);
3580 : 33945 : return true;
3581 : : }
3582 : : }
3583 : : return false;
3584 : 131458 : }
3585 : :
3586 : 0 : bool CConnman::AddedNodesContain(const CAddress& addr) const
3587 : : {
3588 : 0 : AssertLockNotHeld(m_added_nodes_mutex);
3589 : 0 : const std::string addr_str{addr.ToStringAddr()};
3590 [ # # ]: 0 : const std::string addr_port_str{addr.ToStringAddrPort()};
3591 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
3592 [ # # ]: 0 : return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3593 [ # # # # ]: 0 : && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3594 [ # # # # : 0 : [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
# # ]
3595 : 0 : }
3596 : :
3597 : 6085 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3598 : : {
3599 : 6085 : LOCK(m_nodes_mutex);
3600 [ + + ]: 6085 : if (flags == ConnectionDirection::Both) // Shortcut if we want total
3601 : 1826 : return m_nodes.size();
3602 : :
3603 : 4259 : int nNum = 0;
3604 [ + + ]: 182083 : for (const auto& pnode : m_nodes) {
3605 [ + + + + ]: 354633 : if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3606 : 1333 : nNum++;
3607 : : }
3608 : : }
3609 : :
3610 : 4259 : return nNum;
3611 : 6085 : }
3612 : :
3613 : :
3614 : 0 : std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3615 : : {
3616 : 0 : LOCK(g_maplocalhost_mutex);
3617 [ # # # # ]: 0 : return mapLocalHost;
3618 : 0 : }
3619 : :
3620 : 59752 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3621 : : {
3622 : 59752 : return m_netgroupman.GetMappedAS(addr);
3623 : : }
3624 : :
3625 : 4097 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3626 : : {
3627 : 4097 : vstats.clear();
3628 : 4097 : LOCK(m_nodes_mutex);
3629 [ + - ]: 4097 : vstats.reserve(m_nodes.size());
3630 [ + + ]: 38960 : for (CNode* pnode : m_nodes) {
3631 [ + - ]: 34863 : vstats.emplace_back();
3632 [ + - ]: 34863 : pnode->CopyStats(vstats.back());
3633 [ + - ]: 34863 : vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3634 : : }
3635 : 4097 : }
3636 : :
3637 : 33731 : bool CConnman::DisconnectNode(const std::string& strNode)
3638 : : {
3639 : 33731 : LOCK(m_nodes_mutex);
3640 [ + - + + ]: 33731 : if (CNode* pnode = FindNode(strNode)) {
3641 [ + - - + : 494 : LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
- - - - -
- - - -
- ]
3642 : 494 : pnode->fDisconnect = true;
3643 : 494 : return true;
3644 : : }
3645 : : return false;
3646 : 33731 : }
3647 : :
3648 : 65901 : bool CConnman::DisconnectNode(const CSubNet& subnet)
3649 : : {
3650 : 65901 : bool disconnected = false;
3651 : 65901 : LOCK(m_nodes_mutex);
3652 [ + + ]: 895912 : for (CNode* pnode : m_nodes) {
3653 [ + - + + ]: 830011 : if (subnet.Match(pnode->addr)) {
3654 [ + - - + : 1598 : LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
- - - - -
- - - - -
- - - - -
- ]
3655 : 1598 : pnode->fDisconnect = true;
3656 : 1598 : disconnected = true;
3657 : : }
3658 : : }
3659 [ + - ]: 65901 : return disconnected;
3660 : 65901 : }
3661 : :
3662 : 52638 : bool CConnman::DisconnectNode(const CNetAddr& addr)
3663 : : {
3664 [ + - ]: 52638 : return DisconnectNode(CSubNet(addr));
3665 : : }
3666 : :
3667 : 94732 : bool CConnman::DisconnectNode(NodeId id)
3668 : : {
3669 : 94732 : LOCK(m_nodes_mutex);
3670 [ + + ]: 3734364 : for(CNode* pnode : m_nodes) {
3671 [ + + ]: 3661112 : if (id == pnode->GetId()) {
3672 [ + - - + : 21480 : LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
- - - - ]
3673 : 21480 : pnode->fDisconnect = true;
3674 : 21480 : return true;
3675 : : }
3676 : : }
3677 : : return false;
3678 : 94732 : }
3679 : :
3680 : 0 : void CConnman::RecordBytesRecv(uint64_t bytes)
3681 : : {
3682 : 0 : nTotalBytesRecv += bytes;
3683 : 0 : }
3684 : :
3685 : 169647 : void CConnman::RecordBytesSent(uint64_t bytes)
3686 : : {
3687 : 169647 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3688 : 169647 : LOCK(m_total_bytes_sent_mutex);
3689 : :
3690 : 169647 : nTotalBytesSent += bytes;
3691 : :
3692 : 169647 : const auto now = GetTime<std::chrono::seconds>();
3693 [ + + ]: 169647 : if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3694 : : {
3695 : : // timeframe expired, reset cycle
3696 : 456 : nMaxOutboundCycleStartTime = now;
3697 : 456 : nMaxOutboundTotalBytesSentInCycle = 0;
3698 : : }
3699 : :
3700 [ + - ]: 169647 : nMaxOutboundTotalBytesSentInCycle += bytes;
3701 : 169647 : }
3702 : :
3703 : 4097 : uint64_t CConnman::GetMaxOutboundTarget() const
3704 : : {
3705 : 4097 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3706 : 4097 : LOCK(m_total_bytes_sent_mutex);
3707 [ + - ]: 4097 : return nMaxOutboundLimit;
3708 : 4097 : }
3709 : :
3710 : 4097 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3711 : : {
3712 : 4097 : return MAX_UPLOAD_TIMEFRAME;
3713 : : }
3714 : :
3715 : 4097 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3716 : : {
3717 : 4097 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3718 : 4097 : LOCK(m_total_bytes_sent_mutex);
3719 [ + - ]: 4097 : return GetMaxOutboundTimeLeftInCycle_();
3720 : 4097 : }
3721 : :
3722 : 110357 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3723 : : {
3724 : 110357 : AssertLockHeld(m_total_bytes_sent_mutex);
3725 : :
3726 [ + + ]: 110357 : if (nMaxOutboundLimit == 0)
3727 : 1415 : return 0s;
3728 : :
3729 [ + + ]: 108942 : if (nMaxOutboundCycleStartTime.count() == 0)
3730 : 84362 : return MAX_UPLOAD_TIMEFRAME;
3731 : :
3732 : 24580 : const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3733 : 24580 : const auto now = GetTime<std::chrono::seconds>();
3734 [ - + ]: 24580 : return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3735 : : }
3736 : :
3737 : 113942 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3738 : : {
3739 : 113942 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3740 : 113942 : LOCK(m_total_bytes_sent_mutex);
3741 [ + + ]: 113942 : if (nMaxOutboundLimit == 0)
3742 : : return false;
3743 : :
3744 [ + + ]: 107231 : if (historicalBlockServingLimit)
3745 : : {
3746 : : // keep a large enough buffer to at least relay each block once
3747 [ + - ]: 106260 : const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3748 : 106260 : const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3749 [ + + - + ]: 106260 : if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3750 : 669 : return true;
3751 : : }
3752 [ + + ]: 971 : else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3753 : 103 : return true;
3754 : :
3755 : : return false;
3756 : 113942 : }
3757 : :
3758 : 4097 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
3759 : : {
3760 : 4097 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3761 : 4097 : LOCK(m_total_bytes_sent_mutex);
3762 [ + + ]: 4097 : if (nMaxOutboundLimit == 0)
3763 : : return 0;
3764 : :
3765 [ + + ]: 2682 : return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3766 : 4097 : }
3767 : :
3768 : 4097 : uint64_t CConnman::GetTotalBytesRecv() const
3769 : : {
3770 : 4097 : return nTotalBytesRecv;
3771 : : }
3772 : :
3773 : 4097 : uint64_t CConnman::GetTotalBytesSent() const
3774 : : {
3775 : 4097 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3776 : 4097 : LOCK(m_total_bytes_sent_mutex);
3777 [ + - ]: 4097 : return nTotalBytesSent;
3778 : 4097 : }
3779 : :
3780 : 12343 : ServiceFlags CConnman::GetLocalServices() const
3781 : : {
3782 : 12343 : return m_local_services;
3783 : : }
3784 : :
3785 : 62422 : static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3786 : : {
3787 [ - + ]: 62422 : if (use_v2transport) {
3788 [ # # ]: 0 : return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3789 : : } else {
3790 [ - + ]: 62422 : return std::make_unique<V1Transport>(id);
3791 : : }
3792 : : }
3793 : :
3794 : 62422 : CNode::CNode(NodeId idIn,
3795 : : std::shared_ptr<Sock> sock,
3796 : : const CAddress& addrIn,
3797 : : uint64_t nKeyedNetGroupIn,
3798 : : uint64_t nLocalHostNonceIn,
3799 : : const CAddress& addrBindIn,
3800 : : const std::string& addrNameIn,
3801 : : ConnectionType conn_type_in,
3802 : : bool inbound_onion,
3803 : 62422 : CNodeOptions&& node_opts)
3804 : 62422 : : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3805 : 62422 : m_permission_flags{node_opts.permission_flags},
3806 [ + + ]: 62422 : m_sock{sock},
3807 : 62422 : m_connected{GetTime<std::chrono::seconds>()},
3808 : 62422 : addr{addrIn},
3809 : 62422 : addrBind{addrBindIn},
3810 [ + + + - : 62422 : m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
+ - ]
3811 [ + - ]: 62422 : m_dest(addrNameIn),
3812 : 62422 : m_inbound_onion{inbound_onion},
3813 [ + - ]: 62422 : m_prefer_evict{node_opts.prefer_evict},
3814 : 62422 : nKeyedNetGroup{nKeyedNetGroupIn},
3815 [ + - ]: 62422 : m_conn_type{conn_type_in},
3816 : 62422 : id{idIn},
3817 : 62422 : nLocalHostNonce{nLocalHostNonceIn},
3818 [ + - ]: 62422 : m_recv_flood_size{node_opts.recv_flood_size},
3819 [ + - + - : 124844 : m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
+ + ]
3820 : : {
3821 [ + + + - ]: 62422 : if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3822 : :
3823 [ + + ]: 2247192 : for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3824 [ + - ]: 2184770 : mapRecvBytesPerMsgType[msg] = 0;
3825 : : }
3826 [ + - ]: 62422 : mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3827 : :
3828 [ - + ]: 62422 : if (fLogIPs) {
3829 [ # # # # : 0 : LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
# # ]
3830 : : } else {
3831 [ + - - + : 62422 : LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
- - ]
3832 : : }
3833 [ - - ]: 62422 : }
3834 : :
3835 : 147852 : void CNode::MarkReceivedMsgsForProcessing()
3836 : : {
3837 : 147852 : AssertLockNotHeld(m_msg_process_queue_mutex);
3838 : :
3839 : 147852 : size_t nSizeAdded = 0;
3840 [ + + ]: 295704 : for (const auto& msg : vRecvMsg) {
3841 : : // vRecvMsg contains only completed CNetMessage
3842 : : // the single possible partially deserialized message are held by TransportDeserializer
3843 : 147852 : nSizeAdded += msg.GetMemoryUsage();
3844 : : }
3845 : :
3846 : 147852 : LOCK(m_msg_process_queue_mutex);
3847 : 147852 : m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3848 : 147852 : m_msg_process_queue_size += nSizeAdded;
3849 [ + - ]: 147852 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3850 : 147852 : }
3851 : :
3852 : 149860 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3853 : : {
3854 : 149860 : LOCK(m_msg_process_queue_mutex);
3855 [ + + ]: 149860 : if (m_msg_process_queue.empty()) return std::nullopt;
3856 : :
3857 : 139548 : std::list<CNetMessage> msgs;
3858 : : // Just take one message
3859 : 139548 : msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3860 : 139548 : m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3861 : 139548 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3862 : :
3863 : 279096 : return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3864 : 139548 : }
3865 : :
3866 : 914053 : bool CConnman::NodeFullyConnected(const CNode* pnode)
3867 : : {
3868 [ + - - + : 914053 : return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
- - ]
3869 : : }
3870 : :
3871 : 280189 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3872 : : {
3873 : 280189 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3874 : 280189 : size_t nMessageSize = msg.data.size();
3875 [ - + ]: 280189 : LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3876 [ + - - + ]: 280189 : if (gArgs.GetBoolArg("-capturemessages", false)) {
3877 : 0 : CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3878 : : }
3879 : :
3880 : : TRACEPOINT(net, outbound_message,
3881 : : pnode->GetId(),
3882 : : pnode->m_addr_name.c_str(),
3883 : : pnode->ConnectionTypeAsString().c_str(),
3884 : : msg.m_type.c_str(),
3885 : : msg.data.size(),
3886 : : msg.data.data()
3887 : 280189 : );
3888 : :
3889 : 280189 : size_t nBytesSent = 0;
3890 : 280189 : {
3891 : 280189 : LOCK(pnode->cs_vSend);
3892 : : // Check if the transport still has unsent bytes, and indicate to it that we're about to
3893 : : // give it a message to send.
3894 [ + + ]: 280189 : const auto& [to_send, more, _msg_type] =
3895 [ + + ]: 280189 : pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3896 [ + + - + ]: 280189 : const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3897 : :
3898 : : // Update memory usage of send buffer.
3899 : 280189 : pnode->m_send_memusage += msg.GetMemoryUsage();
3900 [ + - ]: 280189 : if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3901 : : // Move message to vSendMsg queue.
3902 [ + - ]: 280189 : pnode->vSendMsg.push_back(std::move(msg));
3903 : :
3904 : : // If there was nothing to send before, and there is now (predicted by the "more" value
3905 : : // returned by the GetBytesToSend call above), attempt "optimistic write":
3906 : : // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3907 : : // doing a send, try sending from the calling thread if the queue was empty before.
3908 : : // With a V1Transport, more will always be true here, because adding a message always
3909 : : // results in sendable bytes there, but with V2Transport this is not the case (it may
3910 : : // still be in the handshake).
3911 [ + + + - ]: 280189 : if (queue_was_empty && more) {
3912 [ + - ]: 191299 : std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3913 : : }
3914 : 280189 : }
3915 [ + + ]: 280189 : if (nBytesSent) RecordBytesSent(nBytesSent);
3916 : 280189 : }
3917 : :
3918 : 3890 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3919 : : {
3920 : 3890 : CNode* found = nullptr;
3921 : 3890 : LOCK(m_nodes_mutex);
3922 [ + + ]: 72360 : for (auto&& pnode : m_nodes) {
3923 [ + + ]: 68691 : if(pnode->GetId() == id) {
3924 : : found = pnode;
3925 : : break;
3926 : : }
3927 : : }
3928 [ + + + - : 3890 : return found != nullptr && NodeFullyConnected(found) && func(found);
- + - - -
- + - ]
3929 : 3890 : }
3930 : :
3931 : 15777 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3932 : : {
3933 : 15777 : return CSipHasher(nSeed0, nSeed1).Write(id);
3934 : : }
3935 : :
3936 : 0 : uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
3937 : : {
3938 : 0 : std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3939 : :
3940 [ # # # # : 0 : return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
# # ]
3941 : 0 : }
3942 : :
3943 : 0 : void CConnman::PerformReconnections()
3944 : : {
3945 : 0 : AssertLockNotHeld(m_reconnections_mutex);
3946 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3947 : 0 : while (true) {
3948 : : // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3949 [ # # ]: 0 : decltype(m_reconnections) todo;
3950 : 0 : {
3951 [ # # ]: 0 : LOCK(m_reconnections_mutex);
3952 [ # # ]: 0 : if (m_reconnections.empty()) break;
3953 [ # # ]: 0 : todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3954 : 0 : }
3955 : :
3956 [ # # ]: 0 : auto& item = *todo.begin();
3957 : 0 : OpenNetworkConnection(item.addr_connect,
3958 : : // We only reconnect if the first attempt to connect succeeded at
3959 : : // connection time, but then failed after the CNode object was
3960 : : // created. Since we already know connecting is possible, do not
3961 : : // count failure to reconnect.
3962 : : /*fCountFailure=*/false,
3963 [ # # ]: 0 : std::move(item.grant),
3964 : 0 : item.destination.empty() ? nullptr : item.destination.c_str(),
3965 : : item.conn_type,
3966 [ # # ]: 0 : item.use_v2transport);
3967 : 0 : }
3968 : 0 : }
3969 : :
3970 : 4096 : void CConnman::ASMapHealthCheck()
3971 : : {
3972 : 4096 : const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3973 [ + - ]: 4096 : const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3974 : 4096 : std::vector<CNetAddr> clearnet_addrs;
3975 [ + - ]: 4096 : clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3976 [ + - ]: 4096 : std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3977 [ + - ]: 98 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3978 [ + - ]: 4096 : std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3979 [ + - ]: 951 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3980 [ + - ]: 4096 : m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3981 : 4096 : }
3982 : :
3983 : : // Dump binary message to file, with timestamp.
3984 : 0 : static void CaptureMessageToFile(const CAddress& addr,
3985 : : const std::string& msg_type,
3986 : : Span<const unsigned char> data,
3987 : : bool is_incoming)
3988 : : {
3989 : : // Note: This function captures the message at the time of processing,
3990 : : // not at socket receive/send time.
3991 : : // This ensures that the messages are always in order from an application
3992 : : // layer (processing) perspective.
3993 : 0 : auto now = GetTime<std::chrono::microseconds>();
3994 : :
3995 : : // Windows folder names cannot include a colon
3996 : 0 : std::string clean_addr = addr.ToStringAddrPort();
3997 : 0 : std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3998 : :
3999 [ # # # # : 0 : fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
# # ]
4000 [ # # ]: 0 : fs::create_directories(base_path);
4001 : :
4002 [ # # # # ]: 0 : fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4003 [ # # # # ]: 0 : AutoFile f{fsbridge::fopen(path, "ab")};
4004 : :
4005 [ # # ]: 0 : ser_writedata64(f, now.count());
4006 [ # # ]: 0 : f << Span{msg_type};
4007 [ # # ]: 0 : for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4008 [ # # ]: 0 : f << uint8_t{'\0'};
4009 : : }
4010 [ # # ]: 0 : uint32_t size = data.size();
4011 [ # # ]: 0 : ser_writedata32(f, size);
4012 [ # # ]: 0 : f << data;
4013 : 0 : }
4014 : :
4015 : : std::function<void(const CAddress& addr,
4016 : : const std::string& msg_type,
4017 : : Span<const unsigned char> data,
4018 : : bool is_incoming)>
4019 : : CaptureMessage = CaptureMessageToFile;
|