Branch data Line data Source code
1 : : // Copyright (c) 2016 Jeremy Rubin
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : #ifndef BITCOIN_CUCKOOCACHE_H
6 : : #define BITCOIN_CUCKOOCACHE_H
7 : :
8 : : #include <util/fastrange.h>
9 : :
10 : : #include <algorithm> // std::find
11 : : #include <array>
12 : : #include <atomic>
13 : : #include <cmath>
14 : : #include <cstring>
15 : : #include <limits>
16 : : #include <memory>
17 : : #include <utility>
18 : : #include <vector>
19 : :
20 : :
21 : : /** High-performance cache primitives.
22 : : *
23 : : * Summary:
24 : : *
25 : : * 1. @ref bit_packed_atomic_flags is bit-packed atomic flags for garbage collection
26 : : *
27 : : * 2. @ref cache is a cache which is performant in memory usage and lookup speed. It
28 : : * is lockfree for erase operations. Elements are lazily erased on the next insert.
29 : : */
30 : : namespace CuckooCache
31 : : {
32 : : /** @ref bit_packed_atomic_flags implements a container for garbage collection flags
33 : : * that is only thread unsafe on calls to setup. This class bit-packs collection
34 : : * flags for memory efficiency.
35 : : *
36 : : * All operations are `std::memory_order_relaxed` so external mechanisms must
37 : : * ensure that writes and reads are properly synchronized.
38 : : *
39 : : * On setup(n), all bits up to `n` are marked as collected.
40 : : *
41 : : * Under the hood, because it is an 8-bit type, it makes sense to use a multiple
42 : : * of 8 for setup, but it will be safe if that is not the case as well.
43 : : */
44 [ # # ]: 0 : class bit_packed_atomic_flags
45 : : {
46 : : std::unique_ptr<std::atomic<uint8_t>[]> mem;
47 : :
48 : : public:
49 : : /** No default constructor, as there must be some size. */
50 : : bit_packed_atomic_flags() = delete;
51 : :
52 : : /**
53 : : * bit_packed_atomic_flags constructor creates memory to sufficiently
54 : : * keep track of garbage collection information for `size` entries.
55 : : *
56 : : * @param size the number of elements to allocate space for
57 : : *
58 : : * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
59 : : * size
60 : : * @post All calls to bit_is_set (without subsequent bit_unset) will return
61 : : * true.
62 : : */
63 : 0 : explicit bit_packed_atomic_flags(uint32_t size)
64 [ # # ]: 0 : {
65 : : // pad out the size if needed
66 : 0 : size = (size + 7) / 8;
67 [ # # # # : 0 : mem.reset(new std::atomic<uint8_t>[size]);
# # ]
68 [ # # ]: 0 : for (uint32_t i = 0; i < size; ++i)
69 : 0 : mem[i].store(0xFF);
70 [ # # ]: 0 : };
71 : :
72 : : /** setup marks all entries and ensures that bit_packed_atomic_flags can store
73 : : * at least `b` entries.
74 : : *
75 : : * @param b the number of elements to allocate space for
76 : : * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
77 : : * b
78 : : * @post All calls to bit_is_set (without subsequent bit_unset) will return
79 : : * true.
80 : : */
81 : 0 : inline void setup(uint32_t b)
82 : : {
83 : 0 : bit_packed_atomic_flags d(b);
84 [ # # ]: 0 : std::swap(mem, d.mem);
85 : 0 : }
86 : :
87 : : /** bit_set sets an entry as discardable.
88 : : *
89 : : * @param s the index of the entry to bit_set
90 : : * @post immediately subsequent call (assuming proper external memory
91 : : * ordering) to bit_is_set(s) == true.
92 : : */
93 : 0 : inline void bit_set(uint32_t s)
94 : : {
95 : 0 : mem[s >> 3].fetch_or(uint8_t(1 << (s & 7)), std::memory_order_relaxed);
96 : 0 : }
97 : :
98 : : /** bit_unset marks an entry as something that should not be overwritten.
99 : : *
100 : : * @param s the index of the entry to bit_unset
101 : : * @post immediately subsequent call (assuming proper external memory
102 : : * ordering) to bit_is_set(s) == false.
103 : : */
104 : 0 : inline void bit_unset(uint32_t s)
105 : : {
106 : 0 : mem[s >> 3].fetch_and(uint8_t(~(1 << (s & 7))), std::memory_order_relaxed);
107 : 0 : }
108 : :
109 : : /** bit_is_set queries the table for discardability at `s`.
110 : : *
111 : : * @param s the index of the entry to read
112 : : * @returns true if the bit at index `s` was set, false otherwise
113 : : * */
114 : 0 : inline bool bit_is_set(uint32_t s) const
115 : : {
116 : 0 : return (1 << (s & 7)) & mem[s >> 3].load(std::memory_order_relaxed);
117 : : }
118 : : };
119 : :
120 : : /** @ref cache implements a cache with properties similar to a cuckoo-set.
121 : : *
122 : : * The cache is able to hold up to `(~(uint32_t)0) - 1` elements.
123 : : *
124 : : * Read Operations:
125 : : * - contains() for `erase=false`
126 : : *
127 : : * Read+Erase Operations:
128 : : * - contains() for `erase=true`
129 : : *
130 : : * Erase Operations:
131 : : * - allow_erase()
132 : : *
133 : : * Write Operations:
134 : : * - setup()
135 : : * - setup_bytes()
136 : : * - insert()
137 : : * - please_keep()
138 : : *
139 : : * Synchronization Free Operations:
140 : : * - invalid()
141 : : * - compute_hashes()
142 : : *
143 : : * User Must Guarantee:
144 : : *
145 : : * 1. Write requires synchronized access (e.g. a lock)
146 : : * 2. Read requires no concurrent Write, synchronized with last insert.
147 : : * 3. Erase requires no concurrent Write, synchronized with last insert.
148 : : * 4. An Erase caller must release all memory before allowing a new Writer.
149 : : *
150 : : *
151 : : * Note on function names:
152 : : * - The name "allow_erase" is used because the real discard happens later.
153 : : * - The name "please_keep" is used because elements may be erased anyways on insert.
154 : : *
155 : : * @tparam Element should be a movable and copyable type
156 : : * @tparam Hash should be a function/callable which takes a template parameter
157 : : * hash_select and an Element and extracts a hash from it. Should return
158 : : * high-entropy uint32_t hashes for `Hash h; h<0>(e) ... h<7>(e)`.
159 : : */
160 : : template <typename Element, typename Hash>
161 : : class cache
162 : : {
163 : : private:
164 : : /** table stores all the elements */
165 : : std::vector<Element> table;
166 : :
167 : : /** size stores the total available slots in the hash table */
168 : : uint32_t size{0};
169 : :
170 : : /** The bit_packed_atomic_flags array is marked mutable because we want
171 : : * garbage collection to be allowed to occur from const methods */
172 : : mutable bit_packed_atomic_flags collection_flags;
173 : :
174 : : /** epoch_flags tracks how recently an element was inserted into
175 : : * the cache. true denotes recent, false denotes not-recent. See insert()
176 : : * method for full semantics.
177 : : */
178 : : mutable std::vector<bool> epoch_flags;
179 : :
180 : : /** epoch_heuristic_counter is used to determine when an epoch might be aged
181 : : * & an expensive scan should be done. epoch_heuristic_counter is
182 : : * decremented on insert and reset to the new number of inserts which would
183 : : * cause the epoch to reach epoch_size when it reaches zero.
184 : : */
185 : : uint32_t epoch_heuristic_counter{0};
186 : :
187 : : /** epoch_size is set to be the number of elements supposed to be in a
188 : : * epoch. When the number of non-erased elements in an epoch
189 : : * exceeds epoch_size, a new epoch should be started and all
190 : : * current entries demoted. epoch_size is set to be 45% of size because
191 : : * we want to keep load around 90%, and we support 3 epochs at once --
192 : : * one "dead" which has been erased, one "dying" which has been marked to be
193 : : * erased next, and one "living" which new inserts add to.
194 : : */
195 : : uint32_t epoch_size{0};
196 : :
197 : : /** depth_limit determines how many elements insert should try to replace.
198 : : * Should be set to log2(n).
199 : : */
200 : : uint8_t depth_limit{0};
201 : :
202 : : /** hash_function is a const instance of the hash function. It cannot be
203 : : * static or initialized at call time as it may have internal state (such as
204 : : * a nonce).
205 : : */
206 : : const Hash hash_function;
207 : :
208 : : /** compute_hashes is convenience for not having to write out this
209 : : * expression everywhere we use the hash values of an Element.
210 : : *
211 : : * We need to map the 32-bit input hash onto a hash bucket in a range [0, size) in a
212 : : * manner which preserves as much of the hash's uniformity as possible. Ideally
213 : : * this would be done by bitmasking but the size is usually not a power of two.
214 : : *
215 : : * The naive approach would be to use a mod -- which isn't perfectly uniform but so
216 : : * long as the hash is much larger than size it is not that bad. Unfortunately,
217 : : * mod/division is fairly slow on ordinary microprocessors (e.g. 90-ish cycles on
218 : : * haswell, ARM doesn't even have an instruction for it.); when the divisor is a
219 : : * constant the compiler will do clever tricks to turn it into a multiply+add+shift,
220 : : * but size is a run-time value so the compiler can't do that here.
221 : : *
222 : : * One option would be to implement the same trick the compiler uses and compute the
223 : : * constants for exact division based on the size, as described in "{N}-bit Unsigned
224 : : * Division via {N}-bit Multiply-Add" by Arch D. Robison in 2005. But that code is
225 : : * somewhat complicated and the result is still slower than an even simpler option:
226 : : * see the FastRange32 function in util/fastrange.h.
227 : : *
228 : : * The resulting non-uniformity is also more equally distributed which would be
229 : : * advantageous for something like linear probing, though it shouldn't matter
230 : : * one way or the other for a cuckoo table.
231 : : *
232 : : * The primary disadvantage of this approach is increased intermediate precision is
233 : : * required but for a 32-bit random number we only need the high 32 bits of a
234 : : * 32*32->64 multiply, which means the operation is reasonably fast even on a
235 : : * typical 32-bit processor.
236 : : *
237 : : * @param e The element whose hashes will be returned
238 : : * @returns Deterministic hashes derived from `e` uniformly mapped onto the range [0, size)
239 : : */
240 : 0 : inline std::array<uint32_t, 8> compute_hashes(const Element& e) const
241 : : {
242 : 0 : return {{FastRange32(hash_function.template operator()<0>(e), size),
243 : 0 : FastRange32(hash_function.template operator()<1>(e), size),
244 : 0 : FastRange32(hash_function.template operator()<2>(e), size),
245 : 0 : FastRange32(hash_function.template operator()<3>(e), size),
246 : 0 : FastRange32(hash_function.template operator()<4>(e), size),
247 : 0 : FastRange32(hash_function.template operator()<5>(e), size),
248 : 0 : FastRange32(hash_function.template operator()<6>(e), size),
249 : 0 : FastRange32(hash_function.template operator()<7>(e), size)}};
250 : : }
251 : :
252 : : /** invalid returns a special index that can never be inserted to
253 : : * @returns the special constexpr index that can never be inserted to */
254 : : constexpr uint32_t invalid() const
255 : : {
256 : : return ~(uint32_t)0;
257 : : }
258 : :
259 : : /** allow_erase marks the element at index `n` as discardable. Threadsafe
260 : : * without any concurrent insert.
261 : : * @param n the index to allow erasure of
262 : : */
263 : 0 : inline void allow_erase(uint32_t n) const
264 : : {
265 : 0 : collection_flags.bit_set(n);
266 : 0 : }
267 : :
268 : : /** please_keep marks the element at index `n` as an entry that should be kept.
269 : : * Threadsafe without any concurrent insert.
270 : : * @param n the index to prioritize keeping
271 : : */
272 : 0 : inline void please_keep(uint32_t n) const
273 : : {
274 : 0 : collection_flags.bit_unset(n);
275 : : }
276 : :
277 : : /** epoch_check handles the changing of epochs for elements stored in the
278 : : * cache. epoch_check should be run before every insert.
279 : : *
280 : : * First, epoch_check decrements and checks the cheap heuristic, and then does
281 : : * a more expensive scan if the cheap heuristic runs out. If the expensive
282 : : * scan succeeds, the epochs are aged and old elements are allow_erased. The
283 : : * cheap heuristic is reset to retrigger after the worst case growth of the
284 : : * current epoch's elements would exceed the epoch_size.
285 : : */
286 : 0 : void epoch_check()
287 : : {
288 [ # # ]: 0 : if (epoch_heuristic_counter != 0) {
289 : 0 : --epoch_heuristic_counter;
290 : 0 : return;
291 : : }
292 : : // count the number of elements from the latest epoch which
293 : : // have not been erased.
294 : : uint32_t epoch_unused_count = 0;
295 [ # # ]: 0 : for (uint32_t i = 0; i < size; ++i)
296 [ # # # # ]: 0 : epoch_unused_count += epoch_flags[i] &&
297 : 0 : !collection_flags.bit_is_set(i);
298 : : // If there are more non-deleted entries in the current epoch than the
299 : : // epoch size, then allow_erase on all elements in the old epoch (marked
300 : : // false) and move all elements in the current epoch to the old epoch
301 : : // but do not call allow_erase on their indices.
302 [ # # ]: 0 : if (epoch_unused_count >= epoch_size) {
303 [ # # ]: 0 : for (uint32_t i = 0; i < size; ++i)
304 [ # # ]: 0 : if (epoch_flags[i])
305 : 0 : epoch_flags[i] = false;
306 : : else
307 : 0 : allow_erase(i);
308 : 0 : epoch_heuristic_counter = epoch_size;
309 : : } else
310 : : // reset the epoch_heuristic_counter to next do a scan when worst
311 : : // case behavior (no intermittent erases) would exceed epoch size,
312 : : // with a reasonable minimum scan size.
313 : : // Ordinarily, we would have to sanity check std::min(epoch_size,
314 : : // epoch_unused_count), but we already know that `epoch_unused_count
315 : : // < epoch_size` in this branch
316 [ # # ]: 0 : epoch_heuristic_counter = std::max(1u, std::max(epoch_size / 16,
317 [ # # ]: 0 : epoch_size - epoch_unused_count));
318 : : }
319 : :
320 : : public:
321 : : /** You must always construct a cache with some elements via a subsequent
322 : : * call to setup or setup_bytes, otherwise operations may segfault.
323 : : */
324 [ # # ]: 0 : cache() : table(), collection_flags(0), epoch_flags(), hash_function()
325 : : {
326 : 0 : }
327 : :
328 : : /** setup initializes the container to store no more than new_size
329 : : * elements and no less than 2 elements.
330 : : *
331 : : * setup should only be called once.
332 : : *
333 : : * @param new_size the desired number of elements to store
334 : : * @returns the maximum number of elements storable
335 : : */
336 : 0 : uint32_t setup(uint32_t new_size)
337 : : {
338 : : // depth_limit must be at least one otherwise errors can occur.
339 [ # # ]: 0 : size = std::max<uint32_t>(2, new_size);
340 : 0 : depth_limit = static_cast<uint8_t>(std::log2(static_cast<float>(size)));
341 : 0 : table.resize(size);
342 : 0 : collection_flags.setup(size);
343 : 0 : epoch_flags.resize(size);
344 : : // Set to 45% as described above
345 [ # # ]: 0 : epoch_size = std::max(uint32_t{1}, (45 * size) / 100);
346 : : // Initially set to wait for a whole epoch
347 : 0 : epoch_heuristic_counter = epoch_size;
348 : 0 : return size;
349 : : }
350 : :
351 : : /** setup_bytes is a convenience function which accounts for internal memory
352 : : * usage when deciding how many elements to store. It isn't perfect because
353 : : * it doesn't account for any overhead (struct size, MallocUsage, collection
354 : : * and epoch flags). This was done to simplify selecting a power of two
355 : : * size. In the expected use case, an extra two bits per entry should be
356 : : * negligible compared to the size of the elements.
357 : : *
358 : : * @param bytes the approximate number of bytes to use for this data
359 : : * structure
360 : : * @returns A pair of the maximum number of elements storable (see setup()
361 : : * documentation for more detail) and the approximate total size of these
362 : : * elements in bytes.
363 : : */
364 : 0 : std::pair<uint32_t, size_t> setup_bytes(size_t bytes)
365 : : {
366 : 0 : uint32_t requested_num_elems(std::min<size_t>(
367 : 0 : bytes / sizeof(Element),
368 [ # # ]: 0 : std::numeric_limits<uint32_t>::max()));
369 : :
370 : 0 : auto num_elems = setup(requested_num_elems);
371 : :
372 : 0 : size_t approx_size_bytes = num_elems * sizeof(Element);
373 : 0 : return std::make_pair(num_elems, approx_size_bytes);
374 : : }
375 : :
376 : : /** insert loops at most depth_limit times trying to insert a hash
377 : : * at various locations in the table via a variant of the Cuckoo Algorithm
378 : : * with eight hash locations.
379 : : *
380 : : * It drops the last tried element if it runs out of depth before
381 : : * encountering an open slot.
382 : : *
383 : : * Thus:
384 : : *
385 : : * ```
386 : : * insert(x);
387 : : * return contains(x, false);
388 : : * ```
389 : : *
390 : : * is not guaranteed to return true.
391 : : *
392 : : * @param e the element to insert
393 : : * @post one of the following: All previously inserted elements and e are
394 : : * now in the table, one previously inserted element is evicted from the
395 : : * table, the entry attempted to be inserted is evicted.
396 : : */
397 : 0 : inline void insert(Element e)
398 : : {
399 : 0 : epoch_check();
400 : 0 : uint32_t last_loc = invalid();
401 : 0 : bool last_epoch = true;
402 : 0 : std::array<uint32_t, 8> locs = compute_hashes(e);
403 : : // Make sure we have not already inserted this element
404 : : // If we have, make sure that it does not get deleted
405 [ # # ]: 0 : for (const uint32_t loc : locs)
406 [ # # ]: 0 : if (table[loc] == e) {
407 : 0 : please_keep(loc);
408 : 0 : epoch_flags[loc] = last_epoch;
409 : 0 : return;
410 : : }
411 [ # # ]: 0 : for (uint8_t depth = 0; depth < depth_limit; ++depth) {
412 : : // First try to insert to an empty slot, if one exists
413 [ # # ]: 0 : for (const uint32_t loc : locs) {
414 [ # # ]: 0 : if (!collection_flags.bit_is_set(loc))
415 : : continue;
416 : 0 : table[loc] = std::move(e);
417 : 0 : please_keep(loc);
418 : 0 : epoch_flags[loc] = last_epoch;
419 : 0 : return;
420 : : }
421 : : /** Swap with the element at the location that was
422 : : * not the last one looked at. Example:
423 : : *
424 : : * 1. On first iteration, last_loc == invalid(), find returns last, so
425 : : * last_loc defaults to locs[0].
426 : : * 2. On further iterations, where last_loc == locs[k], last_loc will
427 : : * go to locs[k+1 % 8], i.e., next of the 8 indices wrapping around
428 : : * to 0 if needed.
429 : : *
430 : : * This prevents moving the element we just put in.
431 : : *
432 : : * The swap is not a move -- we must switch onto the evicted element
433 : : * for the next iteration.
434 : : */
435 : 0 : last_loc = locs[(1 + (std::find(locs.begin(), locs.end(), last_loc) - locs.begin())) & 7];
436 : 0 : std::swap(table[last_loc], e);
437 : : // Can't std::swap a std::vector<bool>::reference and a bool&.
438 : 0 : bool epoch = last_epoch;
439 : 0 : last_epoch = epoch_flags[last_loc];
440 : 0 : epoch_flags[last_loc] = epoch;
441 : :
442 : : // Recompute the locs -- unfortunately happens one too many times!
443 : 0 : locs = compute_hashes(e);
444 : : }
445 : : }
446 : :
447 : : /** contains iterates through the hash locations for a given element
448 : : * and checks to see if it is present.
449 : : *
450 : : * contains does not check garbage collected state (in other words,
451 : : * garbage is only collected when the space is needed), so:
452 : : *
453 : : * ```
454 : : * insert(x);
455 : : * if (contains(x, true))
456 : : * return contains(x, false);
457 : : * else
458 : : * return true;
459 : : * ```
460 : : *
461 : : * executed on a single thread will always return true!
462 : : *
463 : : * This is a great property for re-org performance for example.
464 : : *
465 : : * contains returns a bool set true if the element was found.
466 : : *
467 : : * @param e the element to check
468 : : * @param erase whether to attempt setting the garbage collect flag
469 : : *
470 : : * @post if erase is true and the element is found, then the garbage collect
471 : : * flag is set
472 : : * @returns true if the element is found, false otherwise
473 : : */
474 : 0 : inline bool contains(const Element& e, const bool erase) const
475 : : {
476 : 0 : std::array<uint32_t, 8> locs = compute_hashes(e);
477 [ # # ]: 0 : for (const uint32_t loc : locs)
478 [ # # ]: 0 : if (table[loc] == e) {
479 [ # # ]: 0 : if (erase)
480 : 0 : allow_erase(loc);
481 : 0 : return true;
482 : : }
483 : : return false;
484 : : }
485 : : };
486 : : } // namespace CuckooCache
487 : :
488 : : #endif // BITCOIN_CUCKOOCACHE_H
|